Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенапряжение определение

Рис. 40. График для определения коэффициента перенапряжения у для Коробовых днищ Рис. 40. График для <a href="/info/50779">определения коэффициента</a> перенапряжения у для Коробовых днищ

    Количественный учет всех противоположных влияний здесь довольно сложен и требует знания констант устойчивости комплексов, а также величин перенапряжения водорода при разных значениях pH. Однако на опыте установлено, что электролитическое определение многих металлов (цинка, никеля и т. д.) из растворов, содержащих аммиачные, цианистые, оксалатные и другие комплексы, вполне возможно, и обычно дает хорошие результаты. К нему приходится прибегать всегда, когда хотят вести в щелочной среде электролитическое осаждение металла, гидроокись ко-торо о малорастворима. Кроме понижения концентрации Н -ионов [c.435]

    Ток обмена у может быть определен по величине перенапряжения т)—а при д /=0, т. е. ири единичной плотности тока  [c.365]

    Для определения стехиометрического числа по уравнению (17.112) необходимо проводить измерения перенапряжения вблизи равновесного потенциала данной реакции. Стехиометрическое число, как это было показано Парсонсом (1955), можно найти также, использовав уравнение [c.370]

    Погнутые валы выправляют механически в холодном состоянии или при нафеве. Первый способ прост и позволяет добиться достаточной точности, но при этом на отдельных участках вала возникают перенапряжения, вследствие чего заметно снижается его усталостная прочность. Правку проводят при помощи домкрата или пресса. На рис. 2.27 показан пресс для правки валов, устанавливаемый на направляющие станка. Выпрямленный вал 3 располагают в центрах станка. После определения деформации, которую необходимо устранить, задний центр станка немного отжимают и вал опускают на призмы 4, установленные на опоре нижнего винта 6. Правку вала осуществляют винтом /, передающим усилие на вал через подпятник 2 Положение призм по диаметру вала регулируют домкратом либо нижним винтом [12]. [c.69]

    И в термодинамике. Работая с электрохимическими потенциалами, можно обойтись без электрического потенциала, хотя его введение может оказаться полезным или удобным. В кинетике электродных процессов в качестве движущей силы реакции может использоваться изменение свободной энергии. Это равносильно использованию поверхностного перенапряжения, определенного в разд. 8. [c.93]

    Деление поляризации на концентрационную и активационную является несколько условным. Так, фазовое перенапряжение, отнесенное к активационной поляризации, существенно зависит от концентрации промежуточных частиц и в этом смысле его можно причислить к концентрационной поляризации. Скорость чисто химической стадии, как известно, определяется соответствующей величиной энергии активации. Химическое или реакционное перенапряжение, определенное ранее как частный случай концентрационной поляризации, можно с известным основанием отнести и к активационной поляризации. Перенапряжение, обязанное замедленности химической стадии, является поэтому как бы переходным звеном между концентрационной и активационной поляризацией. [c.317]


    Фото радиационный эффект, приводящий к образованию дополнительного количества носителей тока определенного типа, может ускорять коррозию металлов в результате облегчения катодного процесса или образования окислов р-типа (на Си, N1, Ре), но может и замедлять коррозию металлов образованием окислов га-типа, снижая перенапряжение кислорода, т. е. облегчая протекание анодного процесса, не связанного с разрушением металла. Вообще влияние этого эффекта незначительно. [c.371]

    Вследствие высокого перенапряжения водорода на ртути (около 1 в) и способности ее к образованию амальгам, обладающих меньшими потенциалами, чем сами выделяющиеся при электролизе металлы, электролиз с применением ртутного катода дает возможность проводить ряд разделений, имеющих большое практическое значение. В качестве примера такого разделения рассмот-трим определение содержания титана в стали (или чугуне). [c.446]

    Таким образом, перенапряжение — это поляризация электрода, обусловленная замедленным протеканием вполне определенной стадии суммарного электродного процесса или относящаяся -к конкретной электродной реакции, к ее основному участнику. [c.296]

    По определению, любая величина поляризации тl=значений Гр и из (15.66) и (15.67) можно получить следующее уравнение для химического перенапряжения, соответствующего замедленности химической стадии, предшествующей акту переноса заряда  [c.323]

    Повышение концентрации электролита сопровождается изменением ij/]-потенциала (см. 174). Поскольку при выделении водорода электродный потенциал имеет отрицательный знак, то из рис. 171 видно, что с ростом концентрации раствора i i становится более положительным. В соответствии с (187.2) перенапряжение при этом возрастает. Аналогичным образом можно проследить влияние на перенапряжение адсорбции поверхностью электрода ПАВ. При адсорбции катионов фх-потенциал становится более положительным по сравнению с его значением в отсутствие ПАВ в расгворе (см. рис. 172), что сопровождаете ростом перенапряжения. Адсорбция анионов снижает перенапряжение. При адсорбции катионов П. В действует как ингибитор — замедлитель электрохимической реакции, при адсорбции анионов — как активатор. Значительным активирующим действием обладают, например, ионы СГ и 1 . Адсорбция ПАВ на границе металл — раствор происходит в определенной для каждого вещества области потенциалов. Поэтому влияние ПАВ на перенапряжение отмечается только тогда, когда потенциал электродного процесса находится в области адсорбции ПАВ. [c.513]

    К уравнению (17.32) можно прийти и из определения перенапряжения т)=<1Г/—подставив вместо и их значения из (17.29) и (17.23). [c.353]

    Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы НаО и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в НаЗО , или пленка фторида железа на стали в растворе НР являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе К1 + или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле- [c.80]

Рис. 47. График для определения коэффициента перенапряжения i/ц Рис. 47. График для <a href="/info/50779">определения коэффициента</a> перенапряжения i/ц
    Как ранее было указано, электрохимическая реакция присоединения электрона к иону водорода требует некоторой энергии активации, т. е. для того, чтобы процесс разряда ионов водорода шел на электроде с определенной скоростью, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который определяется величиной перенапряжения водорода. Потенциал разряда водородных ионов с определенной скоростью к равен сумме равновесного потенциала водородного электрода и величины перенапряжения водорода, обозначаемой г]. Под величиной перенапряжения водорода понимают сдвиг потенциала катода при данной плотности тока 1п в отрицательную сторону по сравнению с потенциалом водородного электрода в том же растворе, в тех же условиях, но при отсутствии тока в системе. Поэтому расход электрической энергии на получение водорода электролизом больше, чем это определяется термодинамическими подсчетами. [c.42]


    Методы определения природы перенапряжения при электрохимических процессах [c.510]

    Выяснение природы перенапряжения при электрохимических процессах представляет определенный теоретический и практический интерес. Электродная поляризация в общем случае складывается из четырех составляющих 1д- Лп. т)р. Лф. Для оценки природы поляризации необходимо найти вклад, который вносит в ее общую величину каждая составляющая. Поскольку в настоящее время отсутствуют необходимые для этого данные, используется упрощенный подход к решению этого вопроса. Во-первых, определяется лимитирующая стадия. Вид перенапряжения, ей свойственный, относится к электродному процессу в целом. Во-вторых, величина поляризации разделяется только на две части концентрационную, к которой относится перенапряжение диффузии, и активационную, объединяющую все остальные виды перенапряжения. Для определения при- [c.510]

    В соответствии с определением т) = Е-Ео, перенапряжение всех анод ных реакций положительно, а катодных — отрицательно. — Примеч. ред. [c.55]

    Основным фактором, определяющим скорость коррозии многих металлов в деаэрированной воде или неокисляющих кислотах, является водородное перенапряжение на катодных участках металла. В соответствии с определением поляризации, водородное перенапряжение — это разность потенциалов между катодом, на котором выделяется водород, и водородным электродом, находящимся в равновесии в том же растворе, т. е. разность измер — (—0,059 pH). Таким образом, водородное перенапряжение измеряют точно так же, как и поляризацию. Обычно считают, что водородное перенапряжение включает лишь активационную поляризацию, соответственно реакции 2Н" - -На — ё, но часто полученные значения содержат еще и омическое перенапряжение, а иногда и концентрационную поляризацию. [c.56]

    Х отя водородное перенапряжение различно в кислой и щелочной среде, в определенных границах его значения мало чувствительны к pH .  [c.57]

Рис. 111-7, График для определения коэффициента перенапряжения эллиптических днищ у . Рис. 111-7, График для <a href="/info/50779">определения коэффициента</a> перенапряжения эллиптических днищ у .
    Молекулы смол, не содержащие длинные алкильные цепи, не могут внедряться в кристаллы парафинов и образовывать смешанные кристаллы. Однако они обладают определенной поверхностной активностью, благодаря которой адсорбируются на поверхности кристаллов твердых углеводородов. Адсорбция таких смол на поверхности кристаллов в процессе кристаллизации вызывает поверхностные перенапряжения, усиливающиеся в связи с одновременным ростом и сжатием кристаллов из-за снижения температуры, вследствие чего поверхность кристаллов деформируется за счет смещения слоев. Активные участки, образовавшиеся в результате таких деформаций, не блокированные в момент образования смолами, служат новыми центрами кристаллизации, что приводит к образованию дендритных кристаллов, сформировавшихся из нескольких центров кристаллизации. Образующиеся дендриты могут иметь древовидные, шарообразные или иные формы /17/. [c.30]

    Таким образом, при электролизе кислот, щелочей л соответствующих солей щелочных и щелочноземельных металлов на З лектродах протекает единственный процесс разложения воды, т. е. выделение водорода и кислорода является первичным процессом при электролизе. Ролъ остальных ионов сводится лишь к обеспечению достаточной для электролиза электропроводности. Следует подчеркнуть, что близость э.д.с. поляри 1ации при з лектролизе кислородсодержащих кислот и щелочей н,1блюдает-ся только при использовании электродов из определенных металлов (Pt, Pd), на которых мало перенапряжение водорода. [c.617]

    Теперь перейдем к сравнению с экспериментальными данными. Рассмотрим капрон (см. табл. 3.1), для которого в неориентированном состоянии ар = 160 МПа (293 К). В работе [3.30] в качестве аргумента приводятся наибольшие значения прочности 60—400 МПа для неориентированных полимеров. Капрон попадает в этот интервал. Автор концепции утверждает, что приведенные значения прочности далеки от прочности химических связей. И это верно, но вопрос заключается в том, для какого состояния характерны эти цифры для высокопрочного или низкопрочного. Нет сомнений, что эти цифры соответствуют низкопрочному состоянию неориентированных полимеров, когда разрушение идет по перенапряженным цепям. Для капрона (см. табл. 3.1) коэффициент перенапряжения х = 25 и, следовательно, разрушение надо характеризовать не ар=160 МПа, а значением в 25 раз большим, т. е. 4 ГПа. А это значит, что /з рвущихся цепей нагружена так же, как и полное число цепей в предельно ориентированном состоянии (12 ГПа). Но 12 ГПа соответствует прочности химической связи ап = 12,9 ГПа в полиамидных цепях, рассчитанной Губановым и Чевычеловым [2.11] (см. ип в табл. 2.1). Поэтому если принять правильные значения прочности в высокопрочном состоянии, то разрыв полимера следует объяснить разрывом химических связей. Для ориентированного капрона ар=1 ГПа (293 К) при коэффициенте перенапряжения, определенном из экспериментального значения у, равном 12. Поэтому перенапряженные цепи, ответственные за процесс разрыва, характеризуются ар=12 ГПа, что соответствует Оп=12 ГПа — предельной прочности, рассчитанной из энергии разрыва С—К-связи. [c.51]

    Скорость чисто химической стадии также определяется соот-вествующей величиной энергии активации. Химическое или реакционное перенапряжение, определенное ранее как частный случай концентрационной поляризации, можно с известным основанием отнести и к активационной поляризации. Перенапряжение, обязанное замедленности химической стадии, является поэтому как бы переходным звеном между концентрационной и активационной поляризацией. [c.298]

    Впервые важная роль химической стадии в электрохимической кинетике была установлена в ходе полярографических исследований. Основы теории полярографических волн с учетом диффузионных и химических ограничений были разработаны чешской школой полярографистов Брдичкой (1943), Визнером и другими, а также Делагеем с сотрудниками. Впоследствии представления о значительной роли химических превращений были перенесены и на другие области электрохимической кинетики. Так, Феттер и Геришер (1951) ввели понятие о реакционном перенапряжении, отвечающем тому случаю, когда скорость электродного процесса определяется условиями протекания химических реакций. По принятой в настоящем учебнике классификации этот вид перенапряжения определен как химическое или реакционное перенапряжение. [c.309]

    Делагеем с сотр. Впоследствии представления о значительной роли химических превращений были перенесены и на другие области электрохимической кинетики. Так, Феттер и Герищер (1951) ввели понятие о реакционном перенапряжении, отвечающем тому случаю, когда скорость электродного процесса определяется условиями протекания химических реакций. По принятой в настоящем учебнике классификации этот вид перенапряжения определен как химическое или реакционное перенапряжение. Физический смысл, вкладываемый в это понятие, можно пояснить, предположив, что протекание суммарной электродной реакции [c.336]

    На рис. 81 приведены поляризационные кривые выделения палладия, полученные гальванокинетическим методом. Прямая а соответствует положению стационарного потенциала палладиевого электрода в данном растворе до снятия поляризационной кривой, кривая Ъ — изменению поляризации с плотностью тока и кривая с — изменению потенциала электрода после выключения тока. Из рисунка видно, что при малых плотностях тока поляризация резко возрастает и дальнейшее увеличение плотности тока приводит к незначительному повышению поляризации. При максимальной плотности тока 20 ма см потенциал выделения палладия составляет 510 мв (отн. н. в. э.). Если считать, что потенциал после выключения тока близок к равновесному значению, то перенапряжение, определенное относительно этого значения, составит 320 мв. Исследования показали, что поляризационные кривые, снятые с различной скоростью (15—0,5 сек.), совпадают. Следовательно, высокая поляризация при осаждении палладия из тетрамминхлоридных растворов обусловлена не концентрационными затруднениями, а другими причинами. [c.128]

    Из кислых растворов возможно даже выделение цинка (f = = —0,76 в) вследствие высокого перенапряжения на нем водорода (—0,75 в). Однако при значительной концентрации Н --ионов осаждение цинка не будет полным. Осаждение становится более полным при уменьшении концентрации кислоты илн, еще лучше, при замене сильной кислоты слабой. Например, хорошие результаты получают при определении цинка в присутствии ацетатной буферной смеси СН3СООН-f Ha OONa, создающей в растворе pH л 6, т. е. концентрацию Н+-ионов порядка 10 г-ион/л. В этих условиях окислительно-восстановительный потенциал пары 2Н Нг понижается до величины  [c.435]

    Уравнения (15.68) и (15.69) внешне не отличаются от уравнения (15.6), выведенного ранее в предположении замедленности диффузии. В обоих случаях раствор вблизи электрода может оказаться полностью освобожденным от восстанавливаемых частиц, что резко увеличивает поляризацию (т1- -с ) и устанавливает предел росту плотности тока (/->/г)- В условиях диффузионных ограничений компенсация разрядившихся частиц происходит за счет их постушления из толщи раствора под действием градиента концентрации, возникающего внутри диффузионного слоя б. Предельная диффузионная плотность тока отвечает в зтом случае максимально возможному градиенту концентрации и является функцией коэффициентов диффузии реагирующих частиц. В условиях замедленности чисто химического превращения восполнение разряжающихся частиц совершается за счет химической реакции, протекающей в непосредственной близости от электрода или на его поверхности. Предельная реакционная плотность тока /г должна быть функцией констант скорости соотнетствующих химических превращений. Определение величин /г н установление закономерностей химического перенапряжения дает основу для изучения кинетики быстрых химических )еакций электрохимическими методами. [c.324]

    До снх пор предполагалось, что отклонение потенциала электрода под током от соответствующего равновесного значения вызвано ка-кой-либо одной причиной и электродная поляризация представляет собой вполне определенный вид перенапряжения. Для реальных условий правильнее говорить о преобладании одного вида перенапряжения. Другие виды перенапряжения накладываются в той или иной степенп на основное перенапряжение. Чаще всего на электрохимическое или на фазовое перенапряжение накладывается концентрационная поляризация. В этом случае сдвиг потенциала под током от равновесного значения будет представлять собой сумму двух или нескольких видов перенапряжения, причем в условиях концентрационных ограничений изменяется и сама активационная [c.375]

    Эта реакция характерна для водородного электрода. Равновесию между ионами НзО (при а+=1) и мoлeкyляpны газообразным водородом (р=1 атм) соответствует вполне определенный потенциал, условно принимаемый равным нулю. При этом потенциале имеется равновесие динамического характера, т. е. на границе электрод — раствор одновременно протекают как процесс разряда ионов гидроксония, так и процесс ионизации адсорбированного водорода, а на границе электрод газ — процессы адсорбции и десорбции водорода. При этом скорссти про-тизоположных процессов равны. Если поляризовать водородный электрод катодно, т. е. подводить к нему з ектроны, то равновесие нарушится и преимущественно будет происходить разряд ионов гидроксония. Отсюда ясно, что разряд ионов гид )оксония и выделение молекулярного водорода будут наблюдаться лишь по достижении равновесного потенциала водородного электрода, соответствующего активности иока гидроксония в растворе и давлению выделяющегося Нг, (при отсутствии перенапряжения). Этим и определяется предельное значение пол5 ризации катода при электролизе с выделением водорода. [c.613]

    НОЙ формы и др.). Таким образом, сопротивление деформированию носит устойчивый или неустойчивый характер. Устойчивое сопротивление деформированию обычно сопровождается с ростом внешней нагрузки (например, при нагружении монотонно возрастающей силой). Переход из устойчивого в неустойчивое состояние сопровождается снижением интенсивности роста или спадом внешней нагрузки и называется предельным состоянием, а параметры, соответствующие ему, - критическими (критическая сила, деформация, напряжение, энергия). Формы потери устойчивости сопротивления деформации разнообразны, например, переход металла из упругого в пластическое состояние, локализация деформаций (шейко-образование) при растяжении, потеря устойчивости первоначальной формы при действии напряжений сжатия и др. Разрушение нередко происходит при нормальных условиях эксплуатации конструкций, когда в целом металл испытывает макроупругие деформации. Такие разрушения, как правило, реализуются при наличии дефектов и конструктивных концентраторов. Последние вызывают локальные перенапряжения и образование микротрещин. Трещины в металле могут существовать и до эксплуатации конструкции, например, холодные и горячие трещины в сварном соединении. При рабочих нагрузках, вследствие действия временных факторов разрушения, происходит медленный, устойчивый рост исходных трещин и при определенных условиях наступает период неустойчивого (быстрого) распространения и окончательного разрушения. Определение критических параметров неустойчивости росту трещин является основной задачей механики разрушения. Критерии механики разрушения, как и феноменологические теории прочности, постулируются на основании какого-либо силового, деформационного или энергетического параметра К (рис.2.7). Условием неустойчивости тела с трещиной является КЖкр (быстрое распространение трещины). [c.76]

    Однако указанная последовательность разряда иоиов и их образования иа электродах часто нарушается в связи с явлением, которое получило название перенапряжения. Для осуи1еетв..тения разряда ионов и их образования на электродах к последним до.тж-на быть приложена определенная электродвижущая сила, вычисляемая по разности электродных потенциалов. Однако к ней до./1/к-ны быть добавлены еще электродвижущая сила, необходимая для преодоления сопротивления электролита, н сумма катодного и анодного неренапряжеии , которые обусловлены побочными п[)о-цессами, происходящими при электролизе на электродах. [c.208]

    Рис. 111-10. график для определения коэффициента перенапряжения сферических днпщ у [c.63]

Рис. 111-13. График для определения коэффициента перенапряжения конических двнщ Рис. 111-13. График для <a href="/info/50779">определения коэффициента</a> перенапряжения конических двнщ

Смотреть страницы где упоминается термин Перенапряжение определение: [c.318]    [c.333]    [c.318]    [c.318]    [c.70]    [c.334]    [c.431]    [c.298]    [c.619]    [c.354]    [c.427]    [c.500]   
Физическая химия (1987) -- [ c.270 ]

Двойной слой и кинетика электродных процессов (1967) -- [ c.170 , c.172 , c.180 ]

Электрохимическая кинетика (1967) -- [ c.447 , c.451 , c.452 , c.453 ]

Теоретическая электрохимия (1981) -- [ c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Более ранние определения видов перенапряжения Омическая поляризация Определение понятия

Определение вида перенапряжения А Измерения с постоянным током

Определение перенапряжения водорода

Определение перенапряжения водорода на катоде

Определение перенапряжения кристаллизации

Определение перенапряжения перехода

Определение потенциала разложения и перенапряжения

Перенапряжение

Перенапряжение диффузии Определение понятия

Перенапряжение кристаллизации Определение понятия

Перенапряжение перехода Определение понятий реакции перехода и перенапряжения перехода

Перенапряжение реакции Определение понятия

Работа 33. Определение перенапряжения выделения металлов

Работа 38. Определение перс напряжения водорода (косвенный метод) (18а). Работа 39. Определение перенапряжении выделения металлов



© 2025 chem21.info Реклама на сайте