Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические окисление

    Исследуя кислоты, полученные при окислении парафиновых углеводородов изостроения, можно составить представление о пунктах окислительной атаки кислорода. Последний действует преимущественно на точку разветвления, иначе говоря, на третичный атом водорода, В результате отщепления боковых цепей образуются в основном кислоты с прямой цепью. Тем не менее парафины с сильно разветвленным угле- родным скелетом продолжают оставаться непонгодными для промышленных целей сырьем [42], При их окислении получают главным обраэом низкомолекулярные и более глубоко окисленные карбоновые кислоты с числом атомов углерода меньше 12, не говоря уже о значительных количествах кислот с разветвленным скелетом. Эти кислоты обладают неприятным запахом и неудовлетворительным моющим действием. Технические нефтяные дистилляты, хотя и обогащенные парафинами, непригодны для получения жирных кислот, предназначенных для мыловарения, так как содержат нафтеновые и ароматические углеводороды, а также другие циклические соединения. [c.445]


    В процессе каталитической очистки качество бензина улучшается, содержание непредельных углеводородов в бензине понижается, а ароматических углеводородов возрастает. В результате получается бензин с лучшим октановым числом и с повышенной устойчивостью к окислению. Кроме того, улучшению октановой характеристики бензинов после их каталитической очистки способствует снижение температуры его конца кипения (до 160—170°) по сравнению с концом кипения исходного сырья. [c.156]

    Химический состав масла ( hemi al onstitution of oil). Качество масла, в значительной степени, зависит от его группового химического состава, т.е. от соотношения парафинов, ароматических соединений и нафтенов. При оценке качества масла и присвоении категории качества, химический состав масла не определяется, так как многие свойства масла существенно улучшаются введением соответствующих присадок. Иногда, в описаниях масла производители указывают основной класс соединений, так как они характеризуют некоторые общие эксплуатационные свойства. Например, парафиновые масла отличаются высоким индексом вязкости, хорошей стойкостью к окислению, а нафтеновые масла - высокой липкостью, хорошими смазывающими свойствами и т.д. [c.41]

    Для нужд народного хозяйства алифатические синтетические кислоты производят окислением парафиновых углеводородов (нефтяного, буроугольного н синтетического происхождения), а ароматические—окислением ароматических углеводородов (бензола, наф- [c.121]

    Гидрированием ароматического кольца в нафтеновое кольцо в присутствии иикеля в качестве катализатора получают почти бесцветные масла, отличающиеся высокой стойкостью к окислению и низкой коксуемостью. Однако вязкостно-температурная характеристика масла улучшается при этом совсем незначительно. [c.237]

    Олефиновые и диолефиновые углеводороды цепной структуры имеют одну (олефиновые) или две (диолефиновые) двойные связи. Общая формула олефинов — С Нг , диолефинов — С Н2 2. Ввиду наличия двойных связей углеводороды этих групп более реакционно способны и менее химически стабильны, чем парафиновые, нафтеновые и ароматические углеводороды. Олефиновые и диолефиновые углеводороды способны к реакциям присоединения, в том числе и окисления. Поэтому присутствие углеводородов этих групп в авиационных топливах не допускается. [c.8]

    Ароматические углеводороды окисляются несколько труднее, чем нафтены, но стойкость их против окисления падает по мере усложнения молекул, в частности с увеличением числа колец. При этом в случае наличия у ароматических колец коротких боковых цепей (или коротких цепей, связывающих между собой ароматические радикалы) окисление сопровождается образованием высокомолекулярных продуктов— смол, асфальтенов и карбенов, часто выпадающих в осадок. Если даже у ароматических колец имеются длинные алкильные цепи, то в результате окисления образуется меньше полимеров, но больше органических кислот и подобных продуктов, не выпадающих в осадок. [c.142]


    Ароматические углеводороды в смесях с нафтенами защищают последние от окисления. Нафтеноароматические углеводороДы легко реагируют с кислородом с образованием кислот, оксикислот, смолистых веществ и могущих выпадать в осадок асфальтенов, карбенов и т. д. [c.142]

    Количество тех или иных продуктов окисления обусловливается преобладанием нафтеновых или же ароматических колец в молекулах. Для получения масел, не дающих при окислении осадков, желательно, чтобы в них оставались нафтеновые и ароматические уг- [c.142]

    Нитросоединение с температурой плавления 86—89 указывает на присутствие мета-метилэтилбензола во фракции 149—159" ароматических углеводородов. Как показали результаты окисления, этот углеводород действительно находится в большом количестве в вышеуказанной фракции. [c.80]

    Строение антрацена установлено Армстронгом и Гинсбергом. Понятие о его строении дают следующие факты. Антрацен гидрируется водородом в момент выделения, присоединяя два атома водорода и образуя дигидроантрацен при исчерпывающем каталитическом восстановлении (N1) присоединяет 14 атомов водорода. Молекулярная формула антрацена СнН о отличается от формулы соответствующего предельного углеводорода СнНзо на 20Н, т. е. структура антрацена должна включать десять л-связей, или один цикл и девять л-связей, два цикла и восемь п-связей, три цикла и семь я-связей и т. д. Присоединение 14Н при гидрировании подтверждает последнюю из указанных возможностей. Характер антрацена ароматический. Окисление его приводит к антрахи-нону — дикетону, сохраняющему число углеродных атомов антрацена и его циклическую структуру, так как восстановлением антрахинона можно снова прийти к антрацену. Строение антрахинона устанавливается синтезом из о-бензоилбензойной кислоты, замыкающейся при действии пятиокиси фосфора  [c.224]

    Большое внимание уделено автором переработке мопоолефинов и ацетилена, а также процессам алкилирования и окисления ароматических углеводородов. [c.6]

    Эффективными промоторами окисления акролеина кислородом являются триалкил- или триарилфосфаты. В присутствии стеарата N1 и трибутилфосфата акролеин окисляется в акриловую кислоту в бензоле при 65 °С и 6 кгс/см с конверсией 28% и селективностью 87,5% [125]. Промоторами при окислении акролеина кислородом в жидкой фазе, могут быть и ароматические нитросоединения, например, возможно окисление при 50 °С и 5 кгс/см в гексане в присутствии нитробензола [126, 127]. При 75 °С смесь пропан — пропилен окисляется с образованием окиси пропилена или акриловой кислоты [128]. Предложен целый ряд катализаторов для окисления акролеина в бензоле молибдат Сн (при 50 °С и давлении кислорода 10 кгс/см получают 67% акриловой кислоты) молибдат Т1 (62%), молибдат Со (64%), смесь молибдатов [129], иод [130]. Возможно окисление под давлением и без добавки катализатора (при 25—30 °С и давлешш кислорода 5 кгс/см конверсия 32%) [131]. [c.157]

    В соответствии с часто высказывавшимся взглядом, что хорошими смазочными свойствами обладают только углеводороды, в молекуле которых имеются циклы, исследовались возможности получения смазочных масел конденсацией высших хлористых алкилов с ароматическими углеводородами. Исходным сырьем для этого применяли газойль с (пределами кипения приблизительно 230—320" , получаемый при синтезе углеводородов по Фишеру — Тропшу, известный под названием когазин П. Этот исходный материал хлорировали и затем подвергали его взаимодействию с ароматическими углеводородами по Фриделю — Крафтсу в присутствии безводного хлористого алюминия. Таким спосо-болМ удавалось получать смазочные масла любой требуемой вязкости, отличавшиеся хорошими низкотемпературными свойствами, стойкостью к окислению и низкой коксуемостью. Однако важнейшая характеристика смазочных масел — их вязкостно-температурная зависимость, выражаемая высотой полюса вязкости или индексом вязкости, для таких масел оказывалась неудовлетворительной. Вязкость этих масел сравнительно круто падает с повышением температуры. Высота полюса вязкости таких масел лежит около 3 индекс вязкости соответственно равен около 30. [c.235]

    Для обезвреживания сточных вод от нефтяных продуктов, сернистых и цианистых соединений, фенолов, поверхностно-активных веществ, кремнийорганических соединений, пестицидов, красителей, соединений мышьяка, канцерогенных ароматических углеводородов и других соединений применяется озон. При действии озона на органические соединения происходят реакции окисления и озонолиза. Озон одновременно обесцвечивает воду и является дезодорантом, применение его не вызывает значительного увеличения солевой массы в воде. Озон подают в сточную воду в виде озоновоздушной или озонокислородной смеси с концентрацией озона в них до 3%. Для лучшего использования озона газовая смесь подается через диспергирующие устройства под слой обезвреживаемой воды. Учитывая высокую токсичность озона и малую поглощаемость его стоками, газы после прохождения через воду надо подвергать очистке от озона. Ввиду высокой стоимости озона го применение целесообразно в сочетании с другими методами — биохимическим, ионообменным, сорбционным. [c.494]


    Наименьшее количество осадков образуется при окислении алкано-циклано-вых углеводородов. Даже при окислении в течениебч при температуре 150° С не образуется заметного количества осадков и только длительное (более 6 ч) окисление приводит к образованию осад-(ков. Ароматические углеводороды при окислении образуют значительное количество нерастворимых осадков и смол. Причем их количество возрастает с увеличением количества колец в молекуле ароматических углеводородов. Влияние углеводородного состава можно иллюстрировать данными табл. 29. [c.111]

    Хорошему окислению пропилена в ароматических углеводородах способствует добавление к реакционной смеси Na2 Oз [40] или К2СО3 [41] для нейтрализации образовавшихся кислот. По первому методу при конверсии 12,5% получают 28,8 мол. % окиси пропилена п 18 мол. % пропиленгликоля наряду с кислотами и эфирами. Для инициирования реакции рекомендуется вводить соединения с карбонильными пли карбоксильными группами, наиример пропионовый альдегид или ацетальдегид. По второму методу [41], благодаря специальной конструкции реакционной камеры, получают высокую конверсию (94,2%) и высокий выход на единицу объема в единицу времени 100 г/ч окиси пропилена и 50 г/ч пропиленгликоля. [c.77]

    Н. Д. Зелинский и Ю, К. Юрьев [1], нрн исследовании ароматических углеводородов уральской (пермской) нефти показали, что окислением ароматических углеводородов с температурой кинеиия 150—170°С и 225—240°С получается бензойная кислота, что дало авторам возможность заключить о присутствии моноалкилбензолов в исследуемой нефти. Однако в работе нет указаний о том, какие именно моноалкилбен-золы присутствуют в уральской нефти. [c.36]

    Для установления строения ароматических углеводородов, входящих во фракцию 149—154°, эту фракцию в количестве 1,67 г окисляли перманганатом калия по Ульману [18]. Смссь органических кислот, полученных в результате окисления фракции, была разделена методом Тауш-Добрян-ского [19]. 13 продуктах окисления было установлено наличие бензойной, изо- и терефталевой кислот. [c.89]

    Наилучшей химической стабильностью обладают малоциклич — ь ые нафтено-ароматические и гибридные углеводороды с длинными алкильными цепями. Процесс окисления эффективно тормозится смолистыми веш,ествами и некоторыми серосодержащими соединениями, содержание которых в маслах регулируется глубиной их очистки. При углубленной очистке эксплуатационные свойства масел улучшают, добавляя в них антиокислительные и другие присадки. [c.132]

    В морской воде под влиянием ветра, отливов и приливов нефть эмульгируется, испаряется, частично растворяется и подвергается химическому и фотохимическому окислению. Для полного окисления нефти в морской воде к])слорода не хватает (для окисления 4 л нефти требуется количество кислорода, содержащееся в 1,5-10 л морской воды, насыщенной воздухом). Вода за1-рязпяется смолистыми неосаждающимися шариками, которые загрязняют также и пляжи. Опасны и ароматические углеводороды, поражающие почти все морские организмы, а также ухудшающие вкус морепродуктов, повышающие их канцерогенность. [c.7]

    Наряду с жидкими и газообразными окислителями для очистки сточных вод применяются и твердые оксиды и гидроксиды металлов переменной валентности (никеля, кобальта, меди, железа, марганца). Гидроксид никеля высшей валентности легко окисляет тидразингидрат, спирты, альдегиды, алифатические и ароматические амины. Продуктами окисления являются в основном карбонаты, азот и вода. Метод рекомендуется для обезвреживания сточных вод с концентрацией токсичных соединений до 0,5 г/л, что является его недостатком. [c.494]

    В ряде регионов Советского Союза нами была проведена генетическая типизация нефтей, которой предшествовали детальные геохимические исследования нефтей. Схема их приведена на рис. 6. Особенно широко использовались спектральные методы исследования нефтей. На первом этапе нефракционированные нефти изучались методами ИКС (для выявления степени их окисленности) и люминесцентным — в целях первичного разделения их на группы. На втором этапе детально исследовались спектральными методами отдельные фракции отбензиненной нефти парафино-нафтеновая методом ИКС, нафтено-ароматическая - УФС, масс-спектроскопии и тонкоструктурной спектроскопии (рис. 7). Широко применялись математические методы обработки полученных материалов. [c.45]

    Для нефтей I генотипа (эйфельско-кыновские, живетские и пашийс-кие отложения), несмотря на большие колебания в их свойствах и сос таве (плотность 0,840—0,930 г/см ), что связано с разными условиями их залегания и влиянием вторичных факторов (окисления и др.), харак терна общность генетических показателей. Отмечается высокая доля СНг-групп в парафиновых цепях, пониженный по сравнению с нефтями других генотипов коэффициент Ц, высокое содержание ароматических и, в особенности, бензольных ядер, примерно равное соотношение моно-и бициклических нафтенов. Характерно пониженное содержание ароматических УВ в бензинах и более высокое, по сравнению с остальными нефтями, содержание нафтено-ароматической фракции. Содержание порфиринов сильно колеблется в нефтях Верхнекамской впадины ванадиевых порфиринов до 51,3, а никелевых до 7,2 мг на 100 г нефти в южных частях провинции содержание металлопорфириновых комплексов в нефтях значительно ниже. [c.59]

    Критериями отмеченных выше изменений нефтей могут служить их закономерное утяжеление в цепи ловушек вверх по восстанию пластов без наличия признаков окисления в этом направлении, близкие значения коэффициента метаморфизма нефтей в погруженных и приподнятых ловушках, незначительные колебания содержания спиртобензольных смол, которое при окислении резко увеличивается. Описанный выше тип региональной миграции характерен, как было сказано выше, для определенных геологических условий — хорошие коллекторы, цепь ловушек с региональным поднятием и т. д. При других геологических условиях, когда региональная миграция УВ происходит в плохо проницаемых породах, для которых характерна фациальная неоднородность, изменение нефтей имеет другой характер. В направлении миграции уменьшаются плотность нефти, содержание смолисто-асфальтеновых компонентов (особенно асфальтенов), ароматических УВ как в бензинах, так и в отбензиненной части нефти. В последней фракции сокращается роль бензольных ароматических УВ. В этом же направлении уменьшается степень циклизации молекул как парафино-нафтеновых, так и нафтено-ароматических УВ. Такие изменения отмечаются в нефтях, залегающих в эоцен-олигоценовых отложениях Западного Предкавказья. [c.113]

    Нами совместно с В.Л. Мехтиевой (экспериментальные работы проведены В.Л. Мехтиевой, ИКС - автором) были изучены нефти, подвергшиеся в лабораторных условиях различным видам гипергенных преобразований. В условиях эксперимента были выявлены роль различных гипергенных факторов в преобразовании нефтей и масштабы этих процессов в аэробных и анаэробных условиях, при бактериальном окислении, выветривании и растворении. В качестве объекта исследования была выбрана нафтено-ароматическая нефть Прикаспийской впадины месторождения [c.129]


Смотреть страницы где упоминается термин Ароматические окисление: [c.708]    [c.712]    [c.46]    [c.245]    [c.204]    [c.126]    [c.270]    [c.47]    [c.241]    [c.14]    [c.185]    [c.86]    [c.70]    [c.122]    [c.125]    [c.130]   
Препаративная органическая химия (1959) -- [ c.657 , c.660 ]

Препаративная органическая химия (1959) -- [ c.65 , c.660 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.672 , c.676 , c.679 , c.685 ]




ПОИСК







© 2025 chem21.info Реклама на сайте