Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения основные классы

    ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.29]

    Нейтральные кислородсодержащие соединения. Основные классы нейтральных кислородсодержащих соединений нефтей, особенно высококипящих фракций, не обладают четко выраженными различиями химической активности, поэтому существующие методы их выделения и разделения трудоемки и многостадийны. [c.92]


    В рядах ациклических и карбоциклических соединений основными классами являются углеводороды. [c.269]

    Механизму действия моющих и диспергирующих присадок посвящено большое число исследований [15, с.. 89]. Действие таких присадок сводится в основном к тому, что они переводят нерастворимые в масле вещества в суспендированное состояние, удерживают мелкодисперсные частицы во взвешенном состоянии, не давая им укрупняться и оседать, а также разрыхляют и смывают отложения с поверхностей деталей. Кроме того, моющие и диспергирующие присадки могут влиять на процессы окисления масел, направляя их в сторону образования соединений, растворимых в масле. Поскольку моющие и диспергирующие присадки являются соединениями различных классов и по эффективности действия существенно различаются, предполагается, что механизм их действия неодинаков. Например, моющее действие нафтенатов свинца и кобальта объясняют их высокой способностью растворять осадки, влияние фенолятов металлов связывают со способностью нейтрализовать кислотные продукты окисления и образовывать вещества, действующие как антиокислители. [c.94]

    Сырье крекинга — нефтяная фракция — представляет собой смесь углеводородов приблизительно одинакового молекулярного веса. Эти углеводороды относятся к различным гомологическим рядам в небольшом количестве содержатся парафины, конденсированные, многоядерные нафтеновые или ароматические углеводороды основную массу составляют алкилированные одно- и многоядерные нафтеновые и ароматические углеводороды, а также алкилированные нафтено-ароматические углеводороды. Длинные парафиновые цепи расщепляются сравнительно легко, значительно труднее идет разрыв олефиновых цепей по месту двойной связи. Описать точно расщепление сложных молекул весьма трудно, но представляется целесообразным для пополнения наших представлений сравнить реакции основных классов соединений, имеющихся в нефти. [c.299]

    Химический состав масла ( hemi al onstitution of oil). Качество масла, в значительной степени, зависит от его группового химического состава, т.е. от соотношения парафинов, ароматических соединений и нафтенов. При оценке качества масла и присвоении категории качества, химический состав масла не определяется, так как многие свойства масла существенно улучшаются введением соответствующих присадок. Иногда, в описаниях масла производители указывают основной класс соединений, так как они характеризуют некоторые общие эксплуатационные свойства. Например, парафиновые масла отличаются высоким индексом вязкости, хорошей стойкостью к окислению, а нафтеновые масла - высокой липкостью, хорошими смазывающими свойствами и т.д. [c.41]


    Фундаментальный труд, посвященный электрохимическим процессам с участием органических соединений. Освещены основные аспекты этой быстро развивающейся области науки — теоретические и методические основы электросинтеза, электрохимическое поведение соединений основных классов, основные типы их превращений с разрывом и образованием новых связей, лабораторные реакции и промышленные процессы, свойства и способы очистки используемых электролитов и растворителей. [c.295]

    В этих процессах используются два основных класса соединений, которые отличаются природой химических связей и технологическими характеристиками применяемых процессов разделения. [c.71]

    Каталитические реакции разделяются на два основных класса гомогенные и гетерогенные. Гетерогенным катализатором является химическое соединение, нерастворимое в реакционной среде. Катализатор может быть индивидуальным, смешанным с другими катализаторами или нанесенным на инертный носитель. Распространенные гетерогенные катализаторы — металлы и их оксиды. Преимущества гетерогенных катализаторов заключаются в их низкой стоимости, простоте регенерации и пригодности к использованию в реакторах как периодического, так и проточного типа. К недостаткам этих катализаторов относятся обычно невысокая специфичность действия и во многих случаях большие затраты энергии на обогрев реакторов и создание повышенного давления. [c.35]

    Алкадиены и алкины термически бс лее устойчивы, чем алкены. При относительно невысокой температуре (ниже 400°С) и давлении, близком к атмосферному, алкадиены превращаются быстрее других классов соединений. Основное направление реакции— диеновый синтез, протекающий по молекулярному механизму  [c.231]

    Процессы синтеза позволяют создавать из сравнительно простых соединений молекулы, обладающие нужными свойствами. Основные классы синтетических материалов, используемых в качестве компонентов масел, следующие  [c.31]

    Вследствие сложности химического состава и трудностей анализа сырья и продуктов механизм основных реакций процессов каталитического гидрооблагораживання нефтяных остатков можно установить лишь в общих чертах. Основные сведения по этим вопросам накоплены исторически трудами многих исследователей различных поколений процессов гидрогенизационной переработки от деструктивной гидрогенизации, получившей развитие в 30-40-х годах, до современных процессов каталитической гидроочистки нефтяных топлив и гидрокрекинга. Основная масса публикаций по химии превращений основных классов соединений, входящих в состав нефтепродуктов, обобщена в монографии [36 а также в обзорных статьях [37, 38, 39]. Анализ имеющихся результатов [c.45]

    Если принять во внимание, что основная масса нефтепродуктов падает на долю углеводородов, а последние в подавляющей части состоят из трех основных классов — парафинов, нафтенов и ароматических углеводородов, заметно различающихся по величине плотности для соединений с одинаковым числом атомов в молекуле, то можно сделать вывод, что величина плотности будет до известной степени характеризовать не только состав и происхождение продукта, но также и его качество. [c.45]

    Между содержанием в нефтях сернистых, азотистых соединений, а также между азотистыми соединениями основного и нейтрального характера существует количественная связь. Условно разделив нефти по содержанию серы на группы А, Б, В и Г и обобщив данные [167—169] по содержанию серы и азота, получим интервалы концентраций и соотношения между различными классами неуглеводородных соединений (табл. 76). Значения содержания общей серы, общего и основного азота связаны линей- [c.241]

    В результате большого числа исследований, выполненных за последние годы в области синтеза и изучения свойств эфиров двухосновных кислот, установлены следующие основные взаимозависимости между строением и физико-химическим свойствами соединений этого класса. [c.405]

    В пособии приведены данные, касающиеся методов получения, областей применения и химических свойств основных классов органических соединений. При этом автор стремился подойти к систематическому освещению сущности внутренней природы описываемых явлений. [c.9]

    Соединения азота представлены следующими основными классами их органических производных  [c.125]

    Анализ имеющихся результатов о превращениях основных классов соединений, входящих в состав нефтяного сырья, показывает, что практически для всех типов каталитических систем механизм реакций близок при некоторой разнице в скоростях протекания отдельных стадий и направлений превращений промежуточных продуктов. В конечном счете превращение сырья сводится к удалению серы, азота, кислорода, металлов и к увеличению соотношения водород/углерод в целевом продукте. [c.231]


    Известно огромное число соединений, относящихся к этим гетероциклическим группам. Больщинство их получено синтетически, но некоторые из них, в особенности производные имидазола, встречаются также в природе. Мы ограничимся рассмотрением лишь важнейших основных соединений этого класса. [c.994]

    Для синтеза полимерных многофункциональных присадок, содержащих серу и фосфор, обрабатывают исходные полимеры сульфидами фосфора, в основном сульфидом фосфора (V) (фосфоросернение), и нейтрализуют полученные продукты кислотного характера. Часто эти продукты перед нейтрализацией подвергают гидролизу водяным паром, так как присадки, полученные на основе гидролизованного продукта, весьма стабильны. Описанные в литературе способы синтеза присадок на основе фосфоросернен-ных полимеров различаются главным образом способами нейтрализации в зависимости от нейтрализующего агента могут быть получены зольные (металлсодержащие) и беззольные присадки. Характерно, что присадки обоих типов оказывают на масла более эффективное действие, чем присадки, полученные на основе органических соединений других классов [2, с. 353, 253 254]. [c.205]

    Значительно более широкие возможности открываются при ио-пользовании в ректификационной металлургии летучих соединений. Основными классами соединений,удовлетворяющими перечисленным выше требованиям, являются галогениды и их производные, гидриды, карбонилы, а текже металле- (элементо-)органические соединения и соединения, содерващие органическую часть. [c.65]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Результаты, полученные при изучении химии превращений различных классов соединений в присутствии катализаторов парофазной гидрогенизации, дают возможность сделать вывод о двух составляющих их активности способности ускорять гомолитические реакции (собственно гидрирование и радикальное расщепление) и способности ускорять гетеролитические реакции (изомеризация и ионное расщепление). Связь между составом и свойствами катализаторов и их способностью ускорять эти два основных класса реакций, следовательно, могла бы служить важным ориентиром для технологических исследований. [c.261]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]

    Таким образом, проведенные глубокие исследования жидких продуктов окислительной каталигической конверсии тяжелого нефтяного сырья, позволили не только установить их подробный состав и строение основных классов углеводородов, по U подтвердить то, что наблюдаемые закоиомсрнос-тп нх образования обусловлены протеканием окислительно-восстановительных реакций. Показано наличие в продуктах каталитического крекинга классов соединений, аналогичных продуктам окислительной каталитической конверсии, которое подтверждает высказанное нами ранее предположение [c.55]

    Благодаря свойствам извлекать из сложных органических смесей в определенной последовательности органические соединения различных классов адсорбенты нашли широкое применение в промышленности. В нефтеперерабатываюш ей промышленности они до последнего времени применялись главным образом для доочистки масел после их предварительной сернокислотной или селективной очпстки. Улучшение качества смазочных масел достигается за счет все возрастающ,его применения таких адсорбентов, как отбелпва-юш,ие глины (гумбрин, ханларский бентонит), крошки синтетического шарикового алюмосиликатного катализатора (отходы основного производства) и широкопористых силикагелей. Алюмосиликатные адсорбенты-катализаторы АД и СД могут быть использованы в процессах адсорбционной очистки масел и топлив, при определении группового углеводородного состава остаточных топлив (вместо силикагеля АСК) и прн каталитическом крекинге легких керосино-газойлевых фракций п тяжелых вакуумных дистиллятов. [c.128]

    Наличие в нефти карбоновых кислот натолкнуло исследователей на мысль, что часть нефтяных металлов может существовать в виде солей. Среди нефтяников постепенно укоренилось мнение о нафтенатах как об одном из основных классов металлсодержащих соединений. Позже, когда выяснилось, что карбоксильные группы связаны по только с нафтеновыми остатками, а со многими типами углеводородных и неуглеводородных соединений, стали говорить о солях нефтяных кислот. В таком виде предполагалось существование непорфирипового ванадия и нпкеля, а также других тяжелых металлов. В пользу этой концепции иногда приводится факт копцеитрировапия микроэлементов в остатках, что связывается с нелетучестью солей. Образованием нафтенатов объяснялось и поглощение нефтью ионов тяжелых металлов из водной среды [889]. [c.163]

    Указанные выше основные классы органических соединений, в свою очередь, подразделяются иа более дробные классы. Так, алифатические соединения подразделяются на карбоцепн/ие, у которых цепи образованы только углеродными атомами, и гетероцеп-ные, у которых в состав цепей кроме углеродных входят атомы других многовалентных элементов — кислорода, серы, азота, фосфора, кремния. Карбоциклические соединения подразделяются на алициклические, скелетом которых являются замрснутые циклы нз разного числа (начиная с трех) углеродных атомов, и ароматические, в основе которых лежит особая циклическая группировка нз шести углеродных атомов,— так называемое бензольное кольио. Углеводороды подразделяются на следующие группы алифатические предельные, называемые также алканами, нли парафинами общая формула С На +2  [c.142]

    Первая промышленная установка оксосинтеза была пущена в Батон-Руже (США) в 1948 г., а к 1974 г. мировое производство оксопродуктов Превысило 3,5 млн. т. В основной реакции участвуют соединения разных классов олефины (алкены), диены (алкадиены), ненасыщенные кислоты, спирты и нитрилы, ароматические и гетероциклические соединения, окиси олефинов и др. Наибольшее техническое значение по сравнению с другими продуктами реакции гидроформилирования имеют получаемые на ее основе спирты. [c.255]

    Фактически вся липидная часть растительного мира сводится к веществам двух основных классов 1) соединения, состоящие из молекул, имеющих в основе неразветвленную (или слаборазветвлен-ную) цепь, и 2) соединения, имеющие в основе изопреноидные звенья алифатического и алициклического типов. Возможны также соединения, составленные из частей, принадлежащих к различным классам, например Bo Ka, молекулы которых являются сложными эфирами высших жирных кислот и полициклических изопреноидных спиртов — стеролов. [c.180]

    Коэффициент летучести чистого компонента в жидкой фазе является основным сомножителем в уравнении (11,69), определяющим значение константы равновесия. Точность расчета может быть повышена, если коэффициенты в уравнениях (П,71) и (П,72) находят путем обработки экспериментальных результатов для соединений данного класса. Для легких углеводородов при температуре выше критической уравнения Питцера не могут применяться, и величину V определяют только из экспериментальных данных но равновесию. Аналогично приходится поступать и прн определении значен1[я параметра растворимости 8.. [c.47]

    Анализ сернистых соединений нефтяных дистиллятов сопряжен со значительными трудностями. Строение этих веществ сложнее строения углеводородов, в растворе которых они находятся, а содержание их в нефтепродуктах весьма мало (в среднедистиллятных фракциях высокосернистых нефтей не более 5—7 вес. %). Поэтому ни один из современных аналитических методов не позволяет с исчерпывающей полнотой определить состав нефтяных сернистых соединений. Лишь комбинируя методы определенным образом, удается решить эту задачу. Достоверность результатов во многом зависит от того, как подготовлено сырье для исследования. Насколько важна подготовка материала и насколько она может быть индивидуальна и неповторима для другого сырья, показывает следующий пример. Фракцию 111—150° С нефти месторождения Уассон (США) вначале в изотермических условиях разгоняли на узкие фракции. Из этих фракций специальными комбинированными методами были удалены меркаптаны (опи могли помешать определению соединений других классов). Однако даже такой подготовки оказалось недостаточно. Поэтому узкие фракхщ-подвергли гидрогеполизу. В результате сернистые соединения восстановились до соответствующих углеводородов, которые и были обнаружены методом газо-жидкост-ной хроматографии. Для проверки были проведены параллельные исследования методами ИК- и масс-спектрометрии, которые подтвердили правильность результата основного анализа. [c.75]

    Циановодород может также превращаться в цианацетилен и циановую кислоту — предшествеииики пиримидинов. Эти реакции были воспроизведены в лабораторных условиях. Ведь уже в 1828 г. Велер получил из циановой кислоты II аммиака мочевину — первую животную субстанцию , синтезированную из неорганических соединений. Весьма вероятно, что все подобные процессы первоначально проходили в водной среде, причем ионы Н+ и ОН выступали в роли кислотного или основного катализатора. Замечательно, что три основных класса азотсодержащих биомолекул — пурины, пиримидины и аминокислоты — образуются прн гидролизе олигомеров, которые непосредственпо получены в разбавленных водных растворах H N. Синтез всех этих биомолекул на первобытной Земле мог бы быть следствием постоянного образования H N под действием электрических разрядов и ультрафиолетового излучения, H N, возможно, растворялся в каплях дождя и переносился ими на поверхность Земли, где могла происходить олигомеризация H N с последующим медленным гидролизом образую- [c.184]

    Вторая часть пособия включает описание особенностей структуры, физических и химических свойств функциональных производных углеводородов различных классов, содержащих кислород, азот, серу, фосфор, к-ремний, металльг. Рассматртается характер строения и свойства гетероциклических соединений, включающих атомы кислорода, серы и азота. Особый класс представляют полифункциональные соединения, содержа1цие несколько различных функциональных гр тт. Приведены также принципиальные особенности строения, методов получения и свойств основных классов биохимических веществ - полисахаридов, полипептидов и белков. [c.13]


Смотреть страницы где упоминается термин Соединения основные классы: [c.105]    [c.167]    [c.105]    [c.46]    [c.296]    [c.186]    [c.107]    [c.177]    [c.301]    [c.64]    [c.20]   
Учебник общей химии 1963 (0) -- [ c.43 , c.46 ]

Основы общей химии Т 1 (1965) -- [ c.55 ]

Основы общей химии том №1 (1965) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Основность соединений

Соединения классы



© 2025 chem21.info Реклама на сайте