Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические гидрирование

    В этой главе рассмотрено каталитическое гидрирование циклоалкенов и ароматических углеводородов ряда бензола. Изучение этих реакций тесно связано, так как многие исследователи считают, что образование циклоалкенов является промежуточной стадией гидрирования аренов поэтому, не зная закономерностей гидрирования циклоалкенов, трудно разобраться в механизме превращения алкилбензолов в соответствующие циклоалканы. Хотя эта точка зрения и не является общепризнанной, она заслуживает серьезного внимания. [c.20]


    Алюмоникельмолибденовый катализатор менее активен-в реакциях насыщения, непредельных соединений, зато более активен в отношении насыщения ароматических углеводородов (10—50% по сравнению с АКМу и гидрирования азотист соединений (на 10— 18% выше, чем с АКМ). Вместе с тем он быстро теряет высокую первоначальную активность.  [c.13]

    Платиновый катализатор, что для получения ароматических не очень важно, но имеет большое значение для улучшения антидетонационных свойств бензина, способствует изомеризации парафиновых углеводородов, крекингу их и гидрированию ненасыщенных продуктов крекинга (гидрокрекинг). Последние реакции представляют собой экзотермический процесс, в ходе которого используется часть водорода, освобождающегося в процессе дегидрирования. [c.104]

    Тетралин и нафталин в сходных условиях гидрирования ведут себя так же, как и 1,2-диалкилбензолы, а 1,3,5-триалкилбензолы — как 1,3-диалкилбензолы. Значительное влияние на стереоселективность гидрирования ароматических углеводородов оказывает не только природа используемого металла, но и относительное содержание его в катализаторе. При гидрировании о- и я-кси-лолов на Rh/ с ростом концентрации металла в катализаторе заметно увеличивается содержание транс-форм соответствующих диметилциклогексанов содержание же транс-1,3-диметилциклогексана при гидрировании ж-кси-лола, наоборот, несколько уменьшается. Соответствующие данные приведены в работе [81]. [c.47]

    АНМ катализатор, по сравнению с АКМ, более активен в реакциях гидрирования ароматических углеводородов и азотистых соединений и менее активен в реакциях насыщения непредельных соединений. Однако у него несколько ниже показатели по термостойкости и механической прочности. [c.210]

    С=СН—СН=С< , несопряженной олефиновой С=СН—СНа—СН=С< , ацетиленовой —С=С—, ароматической. Гидрированию могут подвергаться также связи С=0, С—N и др. [c.59]

    При каталитическом риформинге углеводороды нефтяных фракций претерпевают значительные превращения, в результате которых образуются ароматические углеводороды. Это—дегидрирование шестичленных нафтеновых углеводородов, дегидроизомеризация алкилированных пятичленных нафтенов и дегидроциклизация парафиновых углеводородов одновременно протекают реакции расщепления и деалкилирования ароматических углеводородов, а также их уплотнения, которые приводят к отложению кокса на поверхности катализатора. Для предотвращения закоксовывания катализатора и гидрирования образующихся при крекинге непредельных углеводородов в реакторе поддерживается давление водорода 3—4 МПа при получении высокооктанового бензина и 2 МПа — при получении индивидуальных ароматических углеводородов. [c.41]


    В последние годы приобретают значение красители, содержащие наряду с ароматическими гидрированные кольца — производные бензольного, нафталинового и гетероциклического рядов, а также красители, в молекуле которых содержатся длинные цепи [c.723]

    П.З. Гидрирование ароматических углеводородов ряда бензола [c.45]

    Гидрированием ароматического кольца в нафтеновое кольцо в присутствии иикеля в качестве катализатора получают почти бесцветные масла, отличающиеся высокой стойкостью к окислению и низкой коксуемостью. Однако вязкостно-температурная характеристика масла улучшается при этом совсем незначительно. [c.237]

    Гидрирование аренов изучали многие исследователи. Однако в стереоспецифическом аспекте эта реакция обсуждена еще недостаточно, так как большинство работ носит чисто препаративный характер. В основном изучено гидрирование ди- и полиалкилбензолов на платиновых и никелевых катализаторах. Оказалось, что в присутствии различных катализаторов наряду с цис-то-мером образуются транс-изомеры. Между тем, казалось бы, что простое присоединение шести атомов водорода к ароматическому ядру при его плоскостной адсорбции должно приводить исключительно к цис-форме. Поэтому основной интерес здесь представляют следующие вопросы как получаются транс-изомеры циклогексанового ряда, через какие промежуточные стадии идет их образование, имеет ли место десорбция (хотя бы частичная) этих промежуточных соединений в объем с последующей повторной адсорбцией на катализаторе или же все стадии проходят непосредственно в адсорбированном слое. [c.46]

    При гидрировании происходит присоединение водорода к ароматическим углеводородам и они превращаются в нафтеновые, присоединение водорода к непредельным углеводородам превращает их в парафиновые. [c.9]

    Представляло определенный интерес показать, является ли присутствие найденных ранними исследованиями [1,21 конденсированных ароматических углеводородов и их гидрированных аналогов характерным только для сураханской масляной нефти или то же самое может характеризовать п другие нефти. [c.84]

    Проведенное исследование показало, что в мирзаанской нефти присутствуют конденсированные ароматические углеводороды и пх гидрированные аналоги. [c.84]

    Как видно из приведенных схем, началом всех реакций является насыщение гетероциклического кольца, затем происходит разрыв гидрированного кольца в различных положениях с образованием смеси первичных и вторичных аминов. Следующая стадия — дальнейший гидрогенолиз с образованием ароматических углеводородов с короткими боковыми цепями, парафиновых углеводородов и свободного аммиака.  [c.11]

    Суммируя все изложенное выше, можно констатировать, что наиболее правдоподобной является точка зрения, нашедшая отражение в работах 1[20, 21, 77], согласно которой гидрирование аренов и алкенов проходит через ряд общих стадий. Как арены, так и алкены, могут иметь общие адсорбированные на поверхности катализатора частично гидрированные промежуточные образования. При адсорбции на катализаторе ароматического кольца возможны два варианта а) образование шести новых а-связей (XIX) [77], б) образование я-комп-лекса бензола с катализатором (XX) [21]  [c.51]

    Для хроматографии красителей непригодны системы раство рителей, содержащие в качестве подвижной фазы алифатические, ароматические, гидрированные, нитрованные, хлорированные или терпеновые углеводороды. В таких системах нельзя получить условия, необходимые для процесса распределения. [c.71]

    Нефть поддается сульфохлорированию только носле основательной очистки от азот-, кислород- и серусодержаш их соединений, а также, видимо, ароматических углеводородов. Путем гидрирования нод высокил давлением или сернокислотной очистки из нефти может быть выделена смесь углеводородов, ноддаюш ихся сульфохлорированию. Получаюш иеся нрй этом сульфохлориды имеют темную окраску и содержат относительно много хлора в углеродных цепях. [c.138]

    Во фракции жидких продуктов 65—95° находится 25% олефиновых и отсутствуют ароматические, тогда как во фракции 175—195° содержится 62% олефиновых и 31% ароматических углеводородов. После гидрирования жидкой части продуктов синтеза при невысокой температуре и высоком парциальном давлении водорода и иоследующей дистилляции полученного продукта получают следующие относительные выходы (в %). [c.126]

    Так же как для хлорирования и сульфохлорирования, наилучшим техническим исходным материалом для нитрования являются когазин I и II и парафиновый остаток синтеза Фишера — Тропша. Это сырье подвергают очистке путем облагораживающего гидрирования, после этого оцо представляет смесь вполне насыщенных парафиновых углеводоро-родов нормального строения, практически свободных от примесей нафте-нов и ароматических соединений. [c.310]

    Обычно наблюдаемая степень удаления арота не превышает 30%, даже при высоких показателях по удалению серы. Прямая деструкция азотсодержащих соединений невозможна из-за высокой термической стабильности. Энергия разрыва связи С-КНг составляет 335,2 Дж/моль, т. е. практически равна энергии разрьта связи С-С. Удаление азота обязательно должно включать стадию насыщения кольца [36,40]. В результате расход водорода высок — 6-7 моль водорода на моль аммиака [37]. Для ускорения реакции деазотирования в катализаторе необходимы обе функции - гидрирования и гидрообессеривания [47], но они сильно зависят от типа соединений. Азотсодержащие соединения оказывают ингибирующее влияние на активные центры катализаторов гидрообессеривания, природа которых пока полностью не выяснена. В целом гидродеазотирование гетероциклических соединений азота изучено хуже, чем гидрообессеривание. Ясно, однако, что тип связи азота, так же как и связи серы, играет большую роль и определяет скорость деструктивного гидрирования азотсодержащих соединений. Например, алифатические амины значительно более реакционноспособны, чем ароматические. [c.56]


    Смеси парафиновых, нафтеновых и ароматических углеводородов, содержащиеся в нефти или в ее фракциях, а также азотистые, серлистые и кислородные соединения, содержащиеся частично в форм г гетероциклических соединений, и прочие примеси почти непригодны для сульфохлорирования. Лишь после очистки, например гидрированием под высоким давлением, которое превращает азот азотистых соединений в аммиак, серу сернистых соединений в сероводород, кислород кислородных соединений в воду, а ароматические углеводороды в нафтены, обраауется смесь углеводородов, которая более пригодна для сульфохлорирования. [c.374]

    Гидрогенолиз гетероорганических соединений в процессах гпдрооблагораживания происходит в результате разрыва связей С —5, С—Ы, С —О и насыщения водородом образующихся гете — роатомов и двойной связи у углеводородной части молекул нефтяного сырья. При этом сера, азот и кислород выделяются в В1[де соответственно Н 5, NH.J и Н О. Содержащиеся в сырье н1 предельные гидрируются до предельных парафиновых углево — дородов. В зависимости от условий процессов возможны частичное гидрирование и гидрокрекинг полициклических ароматических И смолисто-асфальтеновых углеводородов. Металлооргани — чсские соединения сырья разрушаются, и выделяющиеся металлы о лагаются на катализаторе. [c.204]

    Как уже упоминалось, углеводороды ефтей различного происхождения при сульфохлорировании ведут себя различно. Лучше всего ведут себя углеводородные фракции гидрированных пенсильванских нефтей, которые в этом отношении ближе всего подходят к когазину, так как они в осноаном состоят из парафиновых углеводородов. Менее всего пригодны нефти с богатым содержанием асфальто-смолистых веществ, которые содержат большие количества ароматических и нафтеновых углеводородов. [c.397]

    Накопление большого опытного материала даст основание утверждать о возмох<ной генетической связи между конденсированными ароматическими углеводородами и их гидрированными аналогами. [c.84]

    Следует иметь в виду, что, как показано далее, изучение каталитического гидрирования циклоалкенов и трактовка полученных результатов строились в основном на представлениях классической стереохимии, а конформационный подход использовался сравнительно мало. При гидрировании ароматических углеводородов конформационные свойства исходных и конечных молекул различаются гораздо более существенно, чем при гидрировании циклоалкенов, а потому для. понимания получаемых результатов приходилось учитывать конформационные особенности циклоалканов. Вследствие этого раздел, посвященный конформационным особенностям циклоалканов, непосредственно предшествует разделу, в котором рассмотрено гидрирование ароматических углеводородов ряда бензола. [c.20]

    При гидроочистке на алюмокобальтмолибденовом катализаторе не наблюдается заметного гидрирования бензольного кольца. Би-циклические ароматические углеводороды в значительной части гидрируются до тетралинов, вне зависимости от их исходной концентрации в сырье [1]. [c.8]

    Согласно работам [20—22], гидрирование циклогексенов можно в известном смысле рассматривать как одну из стадий гидрирования ароматических углеводородов, описанного далее в разделе П.З. [c.37]

    Реакции (изомеризации, циклизации) представленные на рис. 10. параллельно оси абсцисс, протекают на кислотных центрах, а изображенные параллельно оси ординат — на металлических цен — трах гидрирования—дегидрирования. Согласно этой схеме, н — гексан сначала дегидрируется на металлических центрах с образо — ванием н —гексена, который мигрирует к соседнему кислотному це1 тру, где протонизируется с образованием вторичного карбени — евого иона, затем изомеризуется в изогексен или циклизуется в мепилциклопентан с последующей изомеризацией в циклогексан (возможна циклизация изогексена сразу в циклогексан). Последний на металлических центрах дегидрируется с образованием конечного продукта — бензола. Возможны и другие маршруты образования ароматических углеводородов. [c.181]

    Гидрирование ароматических углеводородов осуществляется последовательным насыщением ароматических колец с возможным сопг тствующим разрывом образующихся нафтеновых колец и де — алк1 [лированием. [c.225]

    Для получения малосернистых бензиновых фракций, низкоза-стывающих керосиновых и газойлевых фракций и для снижения содержания в вакуумном газойле азота и тяжелых металлов особое внимание следует уделять четкости погоноразделения при перегонке нефти. При коксовании гудрона образуется большое количество многосернистого, богатого тяжелыми металлами кокса, непригодного для металлургической промышленности. В дистиллятах крекинга и коксования содержится много серы и азота, поэтому эти дистилляты надо подвергать глубокому гидрированию. При получении из сернистых нефтей ароматических углеводородов — сырья для нефтехимической промышленности — нужны специальные методы. Перед каталитическим крекингом дистиллятов вакуумной перегонки высокосернистых нефтей, содержащих азот, серу и тяжелые металлы, необходима специальная их обработка, чтобы избежать отравления катализаторов и предотвратить ухудшение качества продуктов крекинга. [c.119]

    Расход водорода при гидрообессеривании остатков изменяется в пределах 80-140 м= /м , причем на реакции гидрогенолиза гетероатомных соединений расходуется лишь около 30%, а остальная часть идет на гидрирование ароматических соединений углеводородов, смол и продуктов расщепления [5, 6, 7, 8]. Производительность катализатора в зависимости от содержания в сырье металлов и асфальтенов при глубине удаления серы 70-93% изменяется в пределах 5,2-1,2 м /кг [9,-10], в то время как на дистиллятном сырье эта величина составляет до 40 м /кг. Низкие показатели по производительности катализаторов свидетельствуют о том, что проблема защиты их от дезактивации является весьма важной. Для подавления коксообразования на катализаторе вьшуждены прибегать к повышению давления водорода в реакторе. Это ведет к увеличению металлоемкости аппаратуры и возрастанию потребления электроэнергии [11,12]. [c.9]

    Успехи органического катализа на современном этапе неотделимы от общего уровня развития органической химии. В частности, конформационные представления с успехом используются при изучении тонких деталей механизма гетерогенно-каталитических реакций, например некоторых стереохимических превращений углеводородов. В связи с этим в книге даются необходимые сведения о конформационной теории, приведен ряд примеров ее использования для трактовки механизма некоторых каталитических реакций углеводородов. В книге рассмотрены и обсуждены наиболее распространенные механизмы гидрирования циклоалкенов и ароматических углеводородов, а также каталитические реакции конфигурационной изомеризации стереоизомерных ди-и полиалкилциклоалканов и гидрогенолиза циклоалка-нов, содержащих от трех до пятнадцати атомов углерода в цикле. [c.7]

    Аналогичный подход был успешно использован и при обсуждении гидрирования других ароматических соединений, в частности дифеновых кислот [11]. Предполагалось, что они адсорбируются в свернутой конформации, в которой карбоксигруппы сближены. Такая концепция позволила легко объяснить, почему гидрирование дифеновых кислот дает преимущественно син-аяти-син-додекагидро-дифеновые кислоты. [c.12]

    Согласно мультиплетной теории, при гидрировании аренов в присутствии металлических катализаторов происходит плоскостная адсорбция ароматического кольца [c.47]

    Оз, Ке) [86]. Многочисленными исследованиями показано, что перечисленные выше металлы, имеющие гране-центрированную кубическую или гексагональную решетку с межатомными расстояниями от 0,249 нм (для N1) до 0,277 нм (для Р1), действительно являются катализаторами гидрирования — дегидрирования. При плоскостной адсорбции ароматическое кольцо, согласно мультиплетной теории, не покидает активный центр, пока не присоединит (сразу или один за другим) все шесть атомов водорода. При этом вопрос об образовании транс-заме-щенных циклогексанов остается открытым. [c.48]

    На основе полученных результатов и стереохимических представлений Сигель пришел к выводу [2], что при гидрировании большей части (свыше 50%) ароматического углеводорода происходит промежуточная десорбция циклоалкена. Однако на основании кинетического анализа [90] было сделано заключение, что доля циклоалкенного пути гидрирования ароматических углеводородов весьма незначительна. Так, было показано 93], что при гидрировании бензола на Ки-черни лишь % исходного углеводорода десорбируется с поверхности катализатора в виде циклогексена, а основная часть бензола гидрируется в ходе однократного пребывания на поверхности. [c.50]


Смотреть страницы где упоминается термин Ароматические гидрирование: [c.135]    [c.4]    [c.10]    [c.17]    [c.209]    [c.225]    [c.15]    [c.51]    [c.7]    [c.86]    [c.47]    [c.54]   
Препаративная органическая химия (1959) -- [ c.493 , c.525 ]

Препаративная органическая химия (1959) -- [ c.493 , c.525 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.505 , c.538 ]




ПОИСК







© 2025 chem21.info Реклама на сайте