Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлов ионы как катализаторы в реакциях

    Гомогенный катализ. Сюда относятся каталитические процессы, в которых реагирующие молекулы и катализатор в форме атомов, молекул или ионов находятся в одной фазе и образуют гомогенную химическую систему. Многие реакции, протекающие в растворах, являются гомогенными каталитическими реакциями. К ним, например, относятся реакции кислотно-основного катализа, катализа комплексными соединениями и окислительно-восстановительного катализа ионами металлов. Гомогенные каталитические реакции в газовой фазе в чистом виде встречаются редко. Условно сюда можно отнести реакции рекомбинации радикалов с участием третьей частицы  [c.616]


    Окислительно-восстановительный катализ в органической химии протекает в присутствии ионов металлов, способных к обратимому изменению валентного состояния. Ион-катализатор ускоряет реакцию, если в восстановленной форме он реагирует с окислителем, а в окисленной - с восстановителем быстрее, чем протекает некатализируемая окислительно-восстановительная реакция. В качестве примеров можно привести высыхание масел под воздействием добавок солей тяжелых металлов, автоокисление спиртов и аминов в присутствии солей меди, марганца, кобальта и железа. [c.238]

    Осаждение покрытия происходит в том случае, если материал является катализатором для восстановительной реакции. Ввиду того, что углерод не является катализатором реакции восстановления ионов меди, никеля, поверхность углеродных волокон необходимо предварительно обработать, придав ей каталитические свойства. С этой целью углеродные волокна подвергают обработке в окислительной среде и проходят стадию сенсибилизации и активации прежде, чем покрываются из химического раствора металлом. Поверхностная обработка в окислительной среде положительно сказывается и на свойствах углеродного волокна при работе в композиционном материале повышается сила сцепления с основой, увеличивается прочность композиции на сдвиг [5]. [c.148]

    При этом атомарный (или ионный) водород, предварительно адсорбированный на катализаторе в непосредственной близости от реагирующей молекулы углеводорода, входит в состав переходного комплекса и далее, после перераспределения электронной плотности, регенерируется уже в молекулярном виде. Наличие поляризованного (и даже ионного) водорода на поверхности металлов в условиях реакции подтверждается работами различных авторов [129—131]. Так, после анализа экспериментальных данных, полученных при изучении адсорбции водорода на Pt, Ni и других металлах в условиях глубокого вакуума, сделан вывод [130] о существовании двух основных видов хемосорбции водорода слабой (обратимой) и прочной (необратимой). Слабо хемосорбированный водород находится, как правило, в молекулярной форме и несет при этом положительный заряд (М —Hj). При прочной хемосорбции водород диссоциирован и заряжен отрицательно (М+—Н-). При анализе состояния водорода в гидридах различных металлов [131] сделан вывод, что в гидридах большей части переходных металлов водород находится в двух формах Н+ и Н при этом форма (М+—Н ) является основной. [c.231]


    Гетеролитический распад Нг более вероятен в полярных растворителях. В результате взаимодействия молекулы Нг с ионом металла и последующего распада молекулы продукта на атомы или ионы могут образоваться молекулярные гидриды металлов. Гидриды металлов являются катализаторами реакций гидрирования. При гетеролитическом распаде Нг процесс активации на комплексных катализаторах протекает без изменения степени окисления металла  [c.628]

    Сорбировать ионы металла, являющегося катализатором реакции восстановления меди на поверхности пластмассы. Этот способ дает возможность наносить более толстые слои меди (в несколько микронов). [c.80]

    Являясь донорами или акцепторами электронов, одни лиганды могут существенно влиять на распределение электронной плотности в других реагирующих молекулах, вошедших вместе с ними в состав комплекса, и изменять энергию отдельных связей. Эти свойства лигандов и ионов металла катализаторов дают возможность регулирования каталитической активности ионов введением в координационную сферу лигандов определенного строения. Лиганды, повышающие каталитическую активность иона металла в данной реакции, называют активаторами каталитической реакции. Лиганды, понижающие каталитическую активность иона металла, называют ингибиторами каталитической реакции. [c.627]

    Газ Нг быстро сорбируется на металлах переменной валентности и медленнее — на окислах металлов и таких элементах, как углерод (графит) и германий [24]. На окислах сорбция часто приводит к образованию гидроокисей. Поэтому нри нагревании мон ет десорбироваться НгО [25, 26]. Кроме того, в некоторых случаях может происходить обратимая сорбция. В этом случае предполагают, что с ионами поверхности металла образуется соединение типа гидрида. В случае металлов газ Нг быстро сорбируется даже при 78° К с теплотой сорбции, которая может достигать 40 ккал или более. Теплота сорбции медленно надает с заполнением поверхности катализатора вплоть до насыщения, после чего она приближается к нулю [27, 27а] . Значительное количество данных подтверждают точку зрения, что сорбция на металлах является прямой реакцией со стехиометрией 1 1 с ионом металла такая реакция приводит к образованию гидрида [28, 29]  [c.546]

    Железоокисные катализаторы характеризуются изменением фазового состава в ходе окислительно-восстановительных реакций, что обусловливает некоторые особенности протекания реакций как в основном процессе, так и в ходе регенерации [3.17]. Ранее предполагалось, что на природном железоокисном катализаторе реакции протекают по радикально-цепному механизму [3.4]. Учитывая рассмотренный в первой главе механизм превращений на катализаторах, содержащих оксиды металлов переменной валентности, можно предположить, что наряду с термической частью реакций, протекающих по радикально-цепному механизму, при окислительной каталитической конверсии значительная часть продуктов, в том числе и коксовых отложений, образуется по механизму карбоксилатного комплекса, в отличие от карбоний-ионного механизма реакций в условиях каталитического крекинга на традиционных катализаторах. [c.63]

    Эти ионы адсорбируются ионами поверхности, причем окисный ион катализатора адсорбирует положительный ион эфира, ион же металла—отрицательный ион в результате протекают конкурирую-ш,ие реакции с ацетат-ионом  [c.135]

    Наиболее полярным из обычных растворителей является вода. Как уже известно из предыдущего (V 4), действие ее на внутримолекулярные связи сказывается настолько сильно, что многие полярные молекулы распадаются на ионы, обменные реакции между которыми протекают практически моментально. Даже в виде следов вода оказывается необыкновенно активным и разносторонним катализатором. Например, при полном ее отсутствии хлор не действует на металлы, фтористый водород не разъедает стекло, натрий и фосфор не окисляются на воздухе и т. д. Подобным же образом следы водяного пара сильно катализируют некоторые реакции разложения (СЬО и др.). Можно сказать, что если бы мы изучали вещества при полном отсутствии воды, то наши представления о химических свойствах многих элементов и соединений были бы совершенно иными, чем в настоящее время. [c.346]

    Важным обстоятельством при восстановлении ионов металла водородом является участие его в реакции в атомарном, а не в молекулярном виде. Процесс Нг— Н< протекает при адсорбции газообразного водорода на зернах металла, служащих катализатором, поэтому процесс вытеснения носит ярко выраженный гетерогенный характер. Для начала вытеснения в раствор необходимо вводить затравку — зерна порошка никеля [c.364]

    Доля катодного процесса с кислородной деполяризацией, по-видимому, невелика, поскольку поступление кислорода с поверхности в вершину трещины затруднено. Ионы водорода адсор бируются на поверхности металла, восстанавливаются, получая электроны, до атомарного и покидают поверхность, являющуюся в данном случае катализатором реакции восстановления водорода. Десорбция атомов водорода с поверхности металла протекает по механизму параллельных реакций часть атомов абсорбируется (поглощается) объемом металла, распространяясь по нему, часть, образуя молекулы, уходит в атмосферу. Водород, попадая в металл. Диффундирует по его объему в зону максимальных трехосных напряжений, которая находится перед вершиной трещины [37, 49]. Водород, поступивший в эту зону, ускоряет процесс коррозионного подрастания трещиНы, так как наводороживание металла существенно снижает его коррозионную стойкость [41]. [c.68]


    Можно предполагать, что после испарения соли и образования корки окислов оставшиеся в окалине хлориды окисляются. Освободившиеся при этом ионы хлора будут, по-видимому, вновь соединяться с металлом, вьшолняя роль катализатора реакции окисления. Наиболее вероятно, что ионы хлора будут концентрироваться в области с наименьшим парциальным давлением кислорода, т.е. на границе металл — окалина. Этим можно объяснить быстрое продвижение фронта окисления в глубь металла. [c.130]

    Риформинг — разновидность каталитического крекинга, — который проводят для получения высокооктанового бензина или индивидуальных ароматических углеводородов из низкооктановых бензиновых фракций (пределы выкипания при температуре 303— 353 К). В качестве бифункциональных катализаторов, способствующих протеканию как реакций гидрирования-дегидрирования, так и изомеризации, применяют металлы и их оксиды (молибден, платину, хром, никель) на носителе — фторированном оксиде алюминия. Реакции углеводородов (деструкции, дегидрирования, изомеризации и др. ) в присутствии ионных катализаторов протекают с очень большими скоростями. Риформинг проводят при температурах 773—973 К. [c.102]

    Сильные кислоты (ВРз, серная или фосфорная кислота) катализируют карбонилирование метанола и в отсутствие переходных металлов, но эти реакции также требуют жестких условий ( 600 атм, 300 °С). В таких реакциях, где катализатором является кислота (синтез Коха [7]), карбонилирование происходит благодаря прямому взаимодействию монооксида углерода с ионом карбения с образованием ацилий-иона, при гидролизе которого образуется соответствующая карбоновая кислота [схемы (6.17), (6.18)]. [c.195]

    Следует отметить, что примеси могут быть своеобразными катализаторами такого процесса образования носителей, при котором их концентрация не изменяется. Например, металлы переменной валентности способны окислять и восстанавливать органические вещества. Так, при наличии в полимере солей кобальта, железа, меди, титана и других металлов возможны следующие реакции ионов этих металлов с макромолекулами  [c.58]

    Образование лабильного комплекса SOg с металл-ионом катализатора, по мнению ряда исследователей, является важным этапом реакции жидкофазного гомогеннокаталитического окисления SOg водными растворами солей марганца. Сравнительно высокую активность Сг-содержащих контактов в рассматриваемой реакции можно попытаться связать со способностью ионов Сг +, присутствие которых вероятно на поверхности хром-оловянных и железо-хромовых контактов, образовывать координационные соединения с кислыми газами, например SOg. Во всяком случае, именно склонностью ионов Сг + к образованию комплексных соединений с НС1 объясняются каталитические свойства окиси хрома в реакции окисления хлористого водорода. [c.268]

    Акцепторы электронов (кислоты) Мулликен разделяет на я-акцепторы, например полинитроароматические соединения, которые обладают ярко выраженной склонностью присоединять я-основания (и которые мы почти не будем рассматривать), на ионные ( ) кислоты, например протон, и на кислоты с вакантными орбиталями (и), например электрононенасыщенные галогениды металлов типа катализаторов реакции Фриделя — Крафтса, которые имеют особую склонность присоединяться к м-основаниям. Галогены, так же как и галогеноводороды, могут присоединяться как к я-, так и к я-основаниям. Движущей силой взаимодействия в обоих случаях является высокая электроотрицательность атома галогена. Для того чтобы атом галогена мог принять отрицательный заряд передаваемого ему электрона, он должен ослабить свою уже имеющуюся ковалентную связь с другим атомом галогена или с водородом, что приводит, когда это возможно, к диссоциации. Хотя галогеноводороды и являются довольно слабыми кислотами Льюиса, в тех случаях, когда неблагоприятное окружение препятствует диссоциации, они могут стать очень сильными кислотами Брен-стеда, если имеются подходящие условия сольватации и диэлектрическая проницаемость растворителя достаточно высока. [c.201]

    Наиболее благоприятные условия для получения максимального выхода надсерной кислоты 1) низкая температура электролиза 20—25 С, способствующая уменьшению гидролиза НаЗгОв 2) малое количество электролита в ванне, что препятствует протеканию побочных химических реакций в объеме 3) циркуляция электролита 4) хорошее разделение катодного и анодного пространств 5) высокая чистота электролита и особенно отсутствие солей тяжелых металлов, являющихся катализаторами реакции разложения HzSgOs и Н2О2. Оптимальная концентрация серной кислоты 40—70%. При добавлении ионов F", С1 , NS выход по току может быть поднят до 65—75%. Напряжение на ванне около 5 в. Нагрузка 700—2000 а. [c.225]

    Роль гидрирующего агента не ограничивается одним ускорением реакций гидрирования. Он влияет также на интенсивность таких типично ионных реакций, как изомеризация и расщепление. Характерно, что не обнаружено корреляции между расщепляющей активностью и числом кислотных центров однако найдена зависимость скорости расщепления т площади, занимаемой металлом (см. рис. 24) Авторы пришли к выводу, что активны лишь кислотные центры катализатора, располагающиеся вблизи металлических кристаллитов, так как только эти центры не закоксовыва-ются в процессе работы. Таким образом, основная роль металлов в катализаторе гидрокрекинга состоит в том, чтобы сохранять кислотные центры активными путем гидрогенизации соединений — предшественников кокса. [c.320]

    Катализаторами реакции являются соли и различные комплексы (ацетплацетонаты, карбонилы) молибдена, вольфрама, ванадия, титана, ниобия и других переходных металлов, растворимых в ре- 1к ионной массе. Скорость и селективность реакции сильно зависят от природы металла и формы, в которой он применяется. Ниже это проиллюстрировано на примере реакции гидропероксида тплбензола с пропиленом при катализе нафтеиатами металлов  [c.440]

    Для придания этим катализаторам устойчивости по отношению к высокотемпературной обработке и действию водяного пара необходимо возможно полнее удалить все ионы щелочных металлов. Такие катализаторы не содержат окиси железа, что делает возможньш[ их использование в качестве крекирующих катализаторов для высокосернистых нефтяных фракций. По сравнению с глинами такие катализаторы отличаются более высокой термостабильностью, что обеспечивает их устойчивость при регенерации. Сравнение каталитических свойств аморфных алюмосиликатов и активированных монтмориллонито-вых глин показывает следующее. При проведении крекинга над аморфными алюмосиликатами получаемые продукты характеризуются лучшим качеством, но худшим распределением продуктов по составу. Кроме того, реакции, протекаюпше в присутствии аморфных алюмосиликатов, характеризуются более низким процентом превращения за проход. В то же время попытки увеличить степень превращения за счет применения более жестких условий приводят к так назьгоаемому "глубокому крекингу, при котором происходит крекинг бензина до газа и кокса и рост процента превращения достигается в результате образования кокса и газа, но не бензина. При проведении крекинга с участием обработанного кислотой монтмориллонита "глубокий" крекинг наблюдается при более высоких степенях превращения, чем в случае аморфных алюмосиликатов. [c.51]

    ЭПХГ обладает высокой химической активностью, при его гидролизе идут побочные реакции. Например, ЭПХГ может легко полимеризоваться, чему способствуют повышение температуры и контакт с некоторыми металлами, особенно с железом. В зависимости от применяемого катализатора получаются подвижные жидкости, высоковязкие масла или смолообразные продукты. Поэтому аппаратуру и трубопроводы для ЭПХГ рекомендуют делать из хромоникелевых сталей [167, 168]. Описан ионный механизм полимеризации эпоксидной группы под действием кислотных или щелочных катализаторов с образованием соединений типа полимерных простых эфиров [169]. В случае присутствия кислотного катализатора реакция протекает следующим образом  [c.41]

    Полимеризация, инициированная ион-радикалами, может протекать как по анионному, так и по радикальному механизму, т. е. с обоих концов мономера, но обычно эта полимеризация близка по механизму к анионной полимеризации, протекающей в присутствии металлооргани-нических соединений. Различие состоит в том, что в этом случае инициаторами или катализаторами реакции являются комплексы, образующиеся в результате донорно-акцепторного взаимодействия шелочного металла с мономером или ароматическим соединением и включающие ион-радикал  [c.93]

    Полимеризация, инициированная ион-радикалами, может протекать как по анионному, так и по радикальному механизму. Инициаторами или катализаторами реакции являются комплексы, образующиеся в результате взаимодействия щелоч-нЪго металла с мономером или ароматическим соединением и включающие ион-радикал  [c.148]

    На все органические реакции влияют электронные эффекты в молекуле. Принципиальная роль иона металла как катализатора сводится к изменению электронных свойств органических молекул. Такого рода действие иона металла наиболее отчетли- [c.233]

    Свет не является специфическим катализатором реакции расщепления изоаллоксазинов в аллоксазины. Собственно расщепление катализируется ионами металлов [66, 67, 711, такими, как Fe+ , Sn , Со , в некоторых случаях основаниями [72] и реагентами на карбонильную группу [60], четвертичными аминами и тпоэфирамн [73]. Фотолиз тормозится третичными ами нами. [c.512]

    I—V—катализ гидролиза сложного эфира протоном (R, / —алкильные группы), VI—хе-латиый промежуточный комплекс, возникающий прн гидролизе эфира аминокислоты под действием аква-иона металла как катализатора типа кислоты Льюиса VII — IX —действие аква иоиа металла как каталнватора типа кислоты Льюнса в реакции декарбоксилнрова- [c.283]

    Способы получения металлических покрытий путем химического восстановления в растворах основаны на реакции взаилюдействия простых или комплексных ионов металла с растворенным восстановителем, в результате которой на каталитически активную поверхность оседает металлический слой. Для ссаждения необходимо, чтобы растворенный восстановитель был достаточно сильным и активным, а образовавшийся металл действовал на реакцию восстановления как катализатор. Это обеспечивает получение компактного покрытия значительной (десятки микрометров) толщины. [c.24]

    В присутствии катализаторов ионов Ре + реакция разложения Na2S20з ускоряется за счет образования неустойчивых на воздухе ионов металла в низших степенях окисления, например  [c.314]

    В других случаях тетрахлоралкан обрабатывают цианидом щелочного металла в растворителе — эфире гликоля, при этом выход 6,6,6-трихлоркапронитрила составляет 91%. Гидролиз последнего серной кислотой приводит к образованию адипиновой кислоты с выходом 90,3% [129]. Гидролиз рекомендуется проводить 86%-ной Н2804 ри 90—120 °С [130]. Адипиновая кислота может быть получеда гидролизом диметиладипината и последующей кристаллизацией из гидролизата. Гидролиз эфиров адипиновой кислоты проводят водой без катализатора при темпера туре выше 150 °С и мольном отношении вода эфир более 10 или в присутствии катализаторов. Реакция катализируется ионом водорода, поэтому для уменьшения индукционного периода при проведении гидролиза без катализатора рекомендуется добавлять к смеси адипиновую кислоту [Д31]. [c.98]

    Таким образом, показано, что на поверхности серебра и других металлов, являющихся катализаторами окисления, сосуществуют разные формы адсорбированного кислорода, которые находятся в виде ионов (О2 и 0 ) либо образуют двумерные или с большим числом слоев поверхностные окислы разного состава и структуры. Под влиянием хемосорбции или целевой реакции окисления происходит перестройка поверхности металла [59], например на платине возникает окисел Р1з04, на серебре Ag20з и т. д. В этих структурах кислород более реакционноспособен, чем в РЮ, Ag20 и др. В зависимости от природы поверхности ( дефекты , дислокации, заряд и т. д.) изменяется соотношение различных форм кислорода, способных окислять углеводороды с разной селективностью. [c.40]

    Молекулярный водород не является в растворе сильным восстановителем в отсутствие катализатора. Молекула водорода может расщепляться либо гомолитнческн на два атома водорода, причем в водном растворе энергия, необходимая для этого процесса, вероятно, приблизительно равна той же величине, что и в газовой фазе (около 103 ккал), либо гетеролитически на сильно гидратированные гидрид-ион Н" и протон Н энергия, необходимая для этого расщепления, составляет приблизительно 33 ккал. Гомолитическое расщепление сильно катализируется поверхностями металлов, которые способны образовывать связь с атомами водорода, а когда эта связь не слишком прочна, такие поверхности являются активными катализаторами для реакции гидрогенизации или восстановления. Коллоидальные платина или палладий, а также тонкораздробленный никель в течение многих лет применялись как катализаторы гидрогенизации. Совсем недавно Кельвин [28] показал, что соли одновалентной меди действуют как гомогенные катализаторы восстановления иона двухвалентной меди или бензохннона в пиридиновом растворе. Аналогичная активность была обнаружена для ряда простых или комплексных ионов металлов в растворах из различных растворителей, а также и для некоторых анионов. Так, например, ионы серебра, двухвалентных меди и ртути, перманганат-и гидроксил-ионы и некоторые комплексы тех же ионов металлов являются в водных растворах катализаторами реакций восстановления ионов бихромата, перманганата, иодата, ионов четырехвалентного церия, двухвалентных меди и ртути, а также катализаторами некоторых реакций обмена и конверсии. В органических растворителях медные или серебряные соли органических кислот выступают в роли катализаторов для аналогичных реакций дико-бальтоктакарбонил Со2(СО)8 служит катализатором реакций гидроформилирования и гидрогенизации, что обсуждается в разд. 4 гл. VIII. В среде аммиака анион является катализатором [c.93]


Смотреть страницы где упоминается термин Металлов ионы как катализаторы в реакциях: [c.155]    [c.165]    [c.530]    [c.174]    [c.214]    [c.68]    [c.21]    [c.302]    [c.39]    [c.39]    [c.21]    [c.486]    [c.154]   
Катализ и ингибирование химических реакций (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции с ионами металлов



© 2025 chem21.info Реклама на сайте