Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизмы реакций крекинга каталитического

    Механизм реакций крекинга был установлен главным образом на основании данных о составе продуктов крекинга. Гипотеза о том, что карбоний-ионы принимают участие в реакциях крекинга, возникла в результате применения рассмотренных выше структурных принципов, а также благодаря тому обстоятельству, что реакции некоторых углеводородов относятся к числу газовых реакций, катализируемых алюмосиликатными катализаторами. Реакции, происходящие при каталитическом крекинге, коренным образом отличаются от реакций термического крекинга в первом случае, по-видимому, образуются карбоний-ионы, тогда как термический крекинг протекает через стадию образования свободных радикалов. Сложность реакций крекинга в некоторой степени затрудняет возможность понимания механизма первичных и вторичных реакций, поскольку скелетная изомеризация углеводородов и перенос водорода приводят к продуктам, отличающимся от первичных продуктов. Высказано предполон ение, что небольшое количество олефипового углеводорода, образующегося в результате термического крекинга, необходимо для того, чтобы инициировать образование карбоний-иона. Это означает, что протекание каталитической реакции не исключает возможности одновременного протекания в небольшой степени термического крекинга. [c.371]


    Введение в сырье каталитического крекинга различных фракций олефинов позволяет повысить глубину превращения сырья и выход бензина, а также, в некоторых сл аях, снизить коксообразование на катализаторе. Выбор этой добавки основывался на механизме реакций крекинга относительно низкая энергия активация образования карбкатионов из олефиновых углеводородов, чем из парафиновых, и, как следствие, интенсификация первичных и вторичных реакций крекинга углеводородного сырья. [c.289]

    Механизм реакций крекинга был установлен на основании данных о составе продуктов крекинга. Реакции, протекающие при каталитическом крекинге, коренным образом отличаются от реакций термического крекинга, в первом случае образуются карбоний - ионы, тогда как термический крекинг протекает через стадию образования свободных радикалов. При каталитическом крекинге протекают реакции первичные (крекинг) и вторичные, такие как изомеризация углеводородного скелета и перенос водорода. Предположено, что небольшое количество олефина (0,1-0,3%), образующееся в результате термического крекинга или вводимое в реакционную смесь специально, оказывают промотирующее воздействие на катализатор (Т.И.Андрианова, С.З.Рогинский, Шмерлинг, Томас). [c.27]

    Отсюда следует, что при объяснении каталитического крекинга встречаются те же трудности, как и для механизмов реакций алкилирования олефинами и замещения ароматических углеводородов. Предлагаются [c.129]

    Железоокисные катализаторы характеризуются изменением фазового состава в ходе окислительно-восстановительных реакций, что обусловливает некоторые особенности протекания реакций как в основном процессе, так и в ходе регенерации [3.17]. Ранее предполагалось, что на природном железоокисном катализаторе реакции протекают по радикально-цепному механизму [3.4]. Учитывая рассмотренный в первой главе механизм превращений на катализаторах, содержащих оксиды металлов переменной валентности, можно предположить, что наряду с термической частью реакций, протекающих по радикально-цепному механизму, при окислительной каталитической конверсии значительная часть продуктов, в том числе и коксовых отложений, образуется по механизму карбоксилатного комплекса, в отличие от карбоний-ионного механизма реакций в условиях каталитического крекинга на традиционных катализаторах. [c.63]


    В литературе появилось огромное количество публикаций об алкилирующих каталитических системах на основе цеолитов. Разноречивы мнения в оценке активных центров и механизма реакции алкилирования бензола пропиленом на цеолитсодержащих катализаторах, а также недостаточное изучение кинетики реакции в определенной мере сдерживают реализацию процесса в промышленности. Кроме того, при алкилировании бензола пропиленом на цеолитах и цеолитсодержащих катализаторах протекают побочные реакции образование полиалкилбензолов, крекинг изопропилбензола с образованием этилбензола и толуола, изомеризация изопропилбензола в н-пропилбензол и полимеризация пропилена. Наличие этих примесей ухудшает количество товарного изопропилбензола, ингибирует процесс его окисления. Переалкилирование полиалкилбензолов протекает при более высоких температурах и давлениях, чем алкилирование. Перспективными представляются цеолитсодержащие катализаторы с редкоземельными элементами СаНУ, на которых переалкилирование протекает в условиях реакции алкилирования. Побочные реакции снижают селективность цеолитсодержащих катализаторов, вызывает их дез- [c.252]

    Итак, модели первой группы (за исключением упрощенных), в общем случае, нецелесообразно использовать для управления. Их следует применять для оптимального проектирования реакторов каталитического крекинга. Однако и в этом случае нужно иметь в виду, что процесс отыскания адекватного механизма реакции весьма сложен. Сложно также и решение задачи параметрической идентификации, т. е. определения численных значений констант скоростей реакции, кажущихся энергий активации и стехиометрических коэффициентов по экспериментальным данным сложность определяется как высокой размерностью задачи, так и [c.103]

    При гетеролитическом катализе промежуточное взаимодействие реагирующих веществ с катализатором протекает по гетеролитиче-скому механизму при этом образование и разрыв двухэлектронных связей протекает без разрушения и образования электронных пар. Гетеролитический механизм осуществляется при каталитических реакциях дегидратации спиртов, гидратации олефинов, крекинга, изомеризации, алкилирования углеводородов, гидролиза и многих других. Катализаторы для этой группы реакций должны обладать способностью к образованию координационной связи путем отдачи или присоединения электронной пары. В частности, они могут представлять собой протонные или апротонные кислоты и основания. [c.406]

    В сложной схеме механизма каталитического крекинга (рис. 15) следует отметить углеводороды, входящие в состав бензина (С5— 195 °С), а также бутены являются нестабильными первичными продуктами пропилен и н-бутан являются стабильными продуктами изобутан, пропан, этилен, этан, метан и кокс представляют собой стабильные продукты вторичных реакций, которые образуются из нестабильных первичных продуктов [23]. Д. И. Орочко с сотр. предложили следующую схему параллельно-последовательного протекания реакций при каталитическом крекинге [24]  [c.45]

    Карбоний-ионный механизм реакций каталитического крекинга можно представить в виде различных схем. Ниже представлена одна из них [28]  [c.48]

    Механизм реакций каталитической изомеризации аналогичен механизму превращений углеводородов при каталитическом крекинге и каталитическом алкилировании изобутана олефинами. Во [c.306]

    На катализаторах с высокой кислотностью и низкой гидрирующей активностью алкилароматические углеводороды вступают в реакции, аналогичные каталитическому крекингу и протекающие по карбкатионному механизму. [c.822]

    КИНЕТИКА И МЕХАНИЗМ РЕАКЦИЙ КАТАЛИТИЧЕСКОГО КРЕКИНГА НАД АКТИВНЫМИ АЛЮМОСИЛИКАТАМИ [c.265]

    Другой возможной причиной излома аррениусовской прямой является Изменение механизма реакции с повышением температуры, изменением лимитирующей стадии процесса. Это предположение требует дальнейшего изучения каталитического окисления углеводородов. Возможно, что меха -низм каталитического окисления при более высоких температурах связан с расщеплением молекул углеводородов (окислительный крекинг). [c.285]

    Катализатор, применяемый в процессе каталитического крекинга, является одним из главных составляющих процесса, от которого зависит эффективность его проведения. На первых этапах развития процесса каталитического крекинга использовались природные глины. На смену им пришли синтетические аморфные алюмосиликаты, которые в настоящее время повсеместно заменяются на кристаллические алюмосиликаты или цеолитсодержащие катализаторы. Химический состав алюмосиликатного катализатора можно выразить формулой А12О3 48Ю2 Н2О + пИзО. Эти вещества обладают кислотными свойствами, и чем более проявляются эти свойства, тем активнее становится катализатор. Механизм реакций при каталитическом крекинге заключается в возникновении на поверхности катализатора при его контакте с сырьем промежуточных продуктов, так называемых карбоний-ио-нов, образующихся в результате взаимодействия кислотного центра с углеводородом. [c.32]


    Концентрация свободных радикалов в катализаторах ЗАЗ и 13X3 гораздо больше, чем в ЗА и 13Х, и каталитическая активность первых значительно выше. В случае молекулярных сит 13X3, насьщенных серой, но не обладаюш,их заметными парамагнитными свойствами, состав продуктов крекинга также указывал на радикальный механизм реакции, хотя каталитическая активность была гораздо ниже. Аналогично, окисленные молеку- лярные сита 13X3 обладают как меньшей интенсивностью сигнала ЭПР, так и меньшей каталитической активностью. [c.183]

    Чтобы достигнуть энергетического состояния, необходимого для разрыва углерод-углеродной связи, нужно создать в каждом из двух указанных случаев ряд определенных условий. Обсунсдение деталей предложенного механизма будет приведено ниже, однако, можно предварительно констатировать, что важной промежуточной фазой реакции при каталитическом крекинге является образование структуры, в которо водорода на один атом меньше, чем в исходной молекуле парафинов и нафтенов, и на один атом водорода больше, чем в исходной молекуле олефинов и замещенных ароматических углеводородов. Эта структура соответствует обычному определению карбониевого иона, отвечающего эмпирической формуле С Н +1 для алифатических углеводородов, СпН 1 для моноциклических нафтенов и СпН2п 5 для моноциклических ароматических углеводородов. [c.114]

    Оба основных механизма — а) крекинг над кислотными катализаторами по ионному механизму и б) термический крекинг по радикальному механизму (при отсутствии катализаторов) соверщенно очевидны. В случае каталитического крекинга постулированные выше ионные реакции являются обратными низкотемпературным (от О до 100° С) реакциям присоединения, протекающими над кислыми катализаторами, а именно, полимеризации олефинов, алкилированию ароматических углеводородов олефинами и алкилированию изопарафинов олефинами. Низкотемпературные реакции над кислыми катализаторами, происходящие, как правило, с участием олефинов, дог1 точно хорошо изучены, и суп ,естБующая по этому вопросу обширная литература [34] позволяет сделать вывод, что механизм этих реакций характеризуется образованием иона карбония как промежуточного продукта. [c.115]

    Крекинг парафиновых и циклопарафиновых углеводородов можно рассматривать как реакцию деалкилирования и механизм его — как механизм,обратный механизму реакции алкилирования. Основной реакцией каталитического крекинга является разложение иона карбония на меньший ион карбония и олофин (правило 2), тогда как для термического крекинга основной реакцией является разложение свободного радикала на меньший радикал и олефин (правило 2 ). В обоих случаях имеет место расщепление связи С—С в бета-положении с образованием трехвалентного атома углерода. Вследствие существенных различий в поведении ионов карбония и свободных радикалов продукты каталитического и термического крекингов заметно отличаются друг от друга. Например [17], при jtpeKHHre гексадеканов в присутствии алюмосиликатных катализаторов [c.235]

    При участии Г. М. Тельбиза изучены бренстедовские кислотные центры цеолитов, способствующие образованию карбанионов, в результате чего расширены представлепия о формах существования гидроксильных групп в полостях цеолитов. В поликатионных формах цеолитов типа фозказита обнаружены неизвестные ранее качественно новые структурные гидроксильные группы, доказана их кислотность. Установлено, что эти группы находятся в доступных местах кристаллической решетки и способны увеличивать каталитическую активность цеолитов в реакциях крекинга и алкилирования, протекающих по карбоний-понному механизму. [c.14]

    Прямогонные фракции нефтей, такие как керосин, дизельное топливо, а также бензин каталитического крекинга часто содержат меркаптановую серу, концентрация которой превышает норму ГОСТ. При этом содержание общей серы в этих фракциях укладывается в нормы. В этих случаях экономию капит альных и эксплутационных затрат даёт использование простой и дешевой технологии каталитической окислительной демеркаптанизации взамен гидроочистки. Окислительная демеркаптанизация топлив, особенно бензиновых фракций, может быть реализована с применением гомогенного или гетерогенного катализатора. Гомогенный вариант реализуется путём смешения меркаптансодержащего сырья с воднощелочным раствором, содержащим катализатор, в присутствии кислорода. Очевидно, что в реакцию с едким натром вступают только низкомолекулярные меркаптаны, образуя меркаптиды, а высокомолекулярные лишь ориентируются своей сульфогидрильной группой (-8Н) в щелочную фазу, не переходя в неё и оставаясь на границе раздела фаз. Для наглядного представления механизма реакций окисления высокомолекулярных тиолов в двухфазной системе и окислительной деструкции фталоцианина, рассмотрим схему, представленную на рис. 3.4. [c.63]

    В главных чертах механизм действия твердых кислот и оснований должен быть аналогичен механизму действия кислот и оснований в гомогенных жидкофазных системах. Для частного случая минеральных кислот, адсорбированных на твердой поверхности, это было показано Гольданским, Семеновым и Чирковым [48]. Для свбственно твердых кислот, как показано рядом авторов [49— 51] на примере реакции крекинга на алюмосиликатных катализаторах, каталитическая активность находится в прямой зависимости от количества, находящегося в катализаторах обменивающегося водорода. Аналогия в строеппи и действии гомогенных и гетерогенных кислых катализаторов указывает на возможность протекания реакций по ионному механизму с ионом протона в качестве катализа- [c.36]

    При помощи меченого соединения углеводородов можно составить правильное представление об определенных иревраще-ниях, происходящих с углеводородами, о механизме и химизме первичных и вторичных реакций каталитического крекинга, каталитической ароматизации и других процессах термического и каталитического превращения сырья. Например, для изучения вторичных реакций, связанных с изменением углеводородного скелета, широко применяется радиоактивный изотоп углерода i4, имеющий большой период полураспада [59]. [c.105]

    Такое влияние металлов можно объяснить их различным вкладом в каталитическую активность при коксообразовании. Добавление к алюмосиликатному катализатору щелочных и щелочноземельных металлов понижает его кислотность и каталитическую активность в отношении образования кокса по карбонийионному механизму. Предполагается [23, 42], что имеет место неравномерное распределение металлов по радиусу и большая их часть отлагается на периферии. В таком случае активность периферийных слоев снижается больше. Это уменьшает диффузионное торможение периферийных слоев, реакции крекинга и коксообразования перемещаются в центральную часть зерна катализатора. Поэтому отложение кокса становится более равномерным. Отметим, что и при равномерном распределении щелочных металлов по радиусу зерна можно ожидать такого же эффекта, так как общее снижение активности катализатора должно понижать диффузионное торможение и смещать реакцию в кинетическую область. [c.13]

    Выбор катализатора риформинга определяется механизмом реакций, протекающих на нем. Реакции гидрирования и дегидрирования протекают по окислительно-восстановительному механизму и катализируются металлами, реакции изомеризации и гидрокрекинга протекают по ионному механизму и катализируются кислотами. Поэтому, в каталитическом крекинге используются бифункциональные катализаторы состава Ме -Ь -ЬА120з , где Ме = молибден, платина, рений, А12О3 — катализатор изомеризации, промотируемый фторидами или хлоридами металлов, являющийся одновременно носителем. [c.144]

    Такие ценпые реакции могут протекать с участием либо свободных радикалов, либо ионов кapбoгпIЯ . Ниже будут описэны господствующие в настоящее время представления о механизме упомянутых выше цепньлх реакций. К реакциям, протекающим с участием свободных радикалов, в первую очередь относятся такие процессы, как термическая полимеризация, термический крекииг и термическое алкилирование. В противоположность этому, реакции с участием ионов карбония являются каталитическими и протекают в присутствии сильных кислот (безводного хлористого алюминия, фтористого водорода, серной кислоты, фтористого бора, фосфорной кислоты, гидросиликата алюминия). При этом температуры реакций, как правило, невелики, за исключением температуры при каталитическом крекинге. К последним реакциям принадлежат каталитическая полимеризация, каталитическое алкилирование, каталитическая изомеризация парафиновых углеводородов и часто встречающаяся при различных превращениях олефинов побочная реакция переноса водорода от одпой молекулы олефина к другой. [c.333]

    Термический крекинг, который в последнее время систематически исследовался [102], также протекает но свободно-радикальному механизму [102]. Результаты термического крекирования и-гексадекана особенно отчетливо указывают па радикальный механизм реакции, п.)тому что в отличие от каталитического крекинга при атом происходит предпочтительное образование этилена. Кроме того, в случае термического процесса изобутилен и изобутан присутствуют в газах крекпнга в значительгю меньшем количестве, чем при каталитическом процессе. Известно, что прп радикальном механизме изомеризации почти пе наблюдается. Можно представить себе, что крекинг гексадекана нроисходит по следующей схеме. [c.337]

    Такие различия между термическим и каталитическим процессами могут быть объяснены тем, что они имеют разный механизм. Катализатор крекинга способен вызывать образование ионов карбония, так как он является очепь сильной кислотой. Поэтому не удивительно, что каталитический крекинг сопровождается реакциями изомеризации и полимеризации, приводящими к возникновению углеводородов с очень разветвленным скелетом. Способность катализатора крекинга к переносу водорода с насыщением части молекул олефинов следует считать проявлением карбоний-ионного механизма, как уже упоминалось при описании гидрополимеризации олефинов. При этой реакции катализатор способствует передаче водорода от одной молекулы олефина к другой. В результате образуются парафин и диен последний может еще раз явиться донором водорода. В конце концов, олефины либо ароматизируются, либо обуглероживаются, покрывая катали- затор налетом кокса. Эта реакция тоже инициируется олефином, который, присоединяя протон катализатора, превращается в ион карбония. В качестве примера приводится механизм каталитического крекинга к-гексадекана [117]. Образование углеводородов С3 и С4 объясняется тем, что по преимуществу происходит Р-расщепление, связанное с изомеризацией иона карбония. Попы этил- и метилкарбоння возникают с ббльшим трудом. [c.344]

    Чтобы пояснить механизм реакции, разберем в качестве наиболее простого примера распад н-гексана, при каталитическом крекинге которого решающее значение имеет относительно устойчивый изопропиль- [c.89]

    При каталитическом крекинге механизм становится гетеролити-ческим, что отражается на составе продуктов крекинга. Реакции этого типа составляют основу одного из важнейших процессов переработки нефти — крекинга. Обсуждая механизм реакций органических соединений, важно не только представлять себе, как проходит та или иная реакция, но и знать, на какой экспериментальной основе построены те или иные пре 1ставления. Для подлинного понимания последнее даже важнее надо знать факты, лежащие в основе того или иного толкования, уметь самостоятельно сделать ИЗ НИХ ВЫВОДЫ (они могут оказаться и отличными от общепринятых ). Именно тогда, когда на основании известных ранее или новых фактов приходят к новым выводам и обобщениям, и делается научное открытие. [c.102]

    В настоящее время большинство исследователей склонно рассматривать механизм реакций каталитического крекинга с точки зрения карбо-пий-ионного механизма, т. е. признания кислой природы активной поверхности катализатора [101, 102]. Согласно этим представлениям промежуточные ионы, образовавшиеся в результате внутримолекулярной перегруппировки, подвергаются реакциям изомеризации и дальнейшему распаду с образованием в качестве конечных продуктов углеводородов с тремя, четырьмя и пятью атомами углерода. Характерной особенностью газов каталитического крекинга является превалирующее (до 90%) содержание углеводородов Сз и С4, в то время как в газах термического крекинга преобладают углеводороды i и j. Это объясняется тем, что распад углеводородов по ионному механизму протекает в отличие от распада по радикальному механизму, как правило, только до пропилкарбониевого иона, так как метил- и этилкарбониевые ионы образуются с большим трудом. Для радикального механизма термического распада характерно отсутствие вторичных реакций изомеризации и циклизации. Однако наличие протонов на поверхности алюмосиликатных катализаторов и кислая природа поверхности алюмосиликатов экспериментально однозначно не доказаны. Многие исследователи развивают другие представления о природе активных центров алюмосиликатных катализаторов [103]. [c.82]

    Особого внимания засл живают исследования каталитических превращений ОСС в щэис тствии промышленных катализаторов гидроочистки, ппатформинга и крекинга, которые генетически связаны с превращениями углеводородов, выполненных ранее Р.Д. Оболенцевым. На основании результатов исследований термодинамики, кинетики и механизма реакций гид-рогенолиза ОСС дано теоретическое обоснование процесса гидроочистки. Выявлена возможность гидрообессеривания высокосернистых нефтей, В результате этих исследований впервые показана возможность применения гетерогсшных катализаторов для ускорения реакций ОСС. Распространенное мнение, что ОСС в основном являются контактными ядами, не подтвердилось, что оказалось чрезвычайно важным для разработки новых технологических процессов с участием соединений серы. [c.197]

    Долгосрочные исследования. Достижения в долгосрочных разработках процессов гидронитроочистки и селективнога крекинга тяжелых масел процесса Коалкон ожидаются в трех областях создание новых методов синтеза катализаторов, отыскание новых каталитических веществ, изучение механизма реакций. [c.181]

    После небольшой доработки генераторы были использованы для производства газов из легких нефтей. В таком процессе нефть инжектируется в киняпций слой коалита и,, контактируя с горячими частицами, подвергается крекингу. Механизм реакций сильно напоминает каталитический или термический крекинг углеводородов. [c.60]

    Л1 — протекают реакции скелетной изомеризации бутиленов и изомеризации по двойной связи, крекинг низкомолекулярных олефинов и, по-видимому, также дегидратация спиртов [225, 255—257, 279]. Для этих реакций с ростом содержания А12О3 в алюмосиликате каталитическая активность растет. Наиболее активна чистая А12О3. Механизм реакции на таких атомах А1, соответственно схеме (38), часто заключается в отщеплении гидрид-иона с образованием карбо-ний-иона, способного к дальнейшим превращениям. В работе Лефтина и Хермана [257], например, было показано с помощью ультрафиолетовых спектров, что при изомеризации бутиленов на алюмосиликатах с перемещением двойной связи промежуточными реак-ционноснособными веществами служат л-аллильные карбоний-ионы  [c.78]

    Высокую каталитическую активность алюмосиликатов большинство исследователей объясняет наличием у них протонной кислотности. Предполагаемая структура активного центра дана на схемах (35) и (36) в главе 2, 1. Реакция крекинга протекает по гетеролитическому механизму через ионы карбония. Апротонные кислоты, например AI2O3, каталитически менее активны. Крекинг углеводородов осуш,ествляется на них по совершенно другому, возможно, гомолитическому, радикальному механизму. Об этом говорит, в частности, значительная дегидрируюш ая активность AlgOg в условиях крекинга [227]. [c.185]

    Почти одновременно были опубликованы результаты измерения каталитической активности цеолитов X с двузарядными катионами [5, 133]. При крекинге парафинов и кумола СаХ более активен, чем NaX и аморфный алюмосиликат, и в присутствии СаХ образуются продукты, типичные для реакций, протекающих по карбониево-ионному механизму. В то же время NaX по активности в крекинге парафинов близок к алюмосиликату, но состав продуктов говорит о радикальном механизме реакции (см. ниже). Исследовательская группа фирмы Mobil Oil [134] впервые привела примеры молекулярно-ситовых эффектов в катализе на цеолитах и указала, что превращения на цеолитах происходят во внутрикристаллическом пространстве. Так, например, узкопористый цеолит СаА катализирует крекинг н-гексана, но в крекинге 3-метилпентана активность не проявляет, поскольку разветвленные углеводороды не могут проникнуть в узкие поры этого цеолита. Таким образом, по сравнению с сильно развитой внутренней поверхностью полостей и каналов (600—900 м7г) внешняя поверхность цеолитов весьма невелика и в катализе она роли не играет. [c.40]

    При исследовании каталитических свойств морденитов была обнаружена уникальная способность Н-морденита проводить гидроизомеризацию парафинов в отсутствие благородных металлов [115, 116, 293]. По условиям проведения эта реакция занимает как бы промежуточное положение между реакциями крекинга на кислотных катализаторах и реакциями гидрокрекинга на бифункциональных катализаторах, содержащих благородные металлы. Активность Н-морденита в гидроизомеризации меняется обратно пропорционально величине парциального давления водорода [116], но селективность и продолжительность работы катализатора при повышении давления Н2 возрастают [293]. Миначев и другие авторы работы [116] предложили собственный механизм гидроизомеризации на Н-мордените [реакция (70)], который объясняет влияние концентрации водорода на активность и селективность. В соответствии с этим механизмом повышение давления Hj должно, с одной стороны, снижать кон-центряпию промежуточных карбониевых ионов и тем самым уменьшать общую изомеризующую активность, а с другой — подавлять крекинг этих карбониевых ионов и, следовательно, увеличивать селективность (ср. работу [294]). Возможность переноса гидрид-ионов [c.108]

    Крекинг газойля. Основная область применения цеолитных катализаторов в промышленности связана с процессом каталитического крекинга дистиллятов первичной перегонки нефти, содержащих алифатические, циклоалифатические (нафтеновые), олефиновые и ароматические углеводороды. При каталитическом крекинге нефтяных фракций протекают реакции дезалкилирования ароматических соединений, крекинга парафинов и олефинов, перераспределения водорода и циклизации олефинов. С основными представлениями о механизмах реакций, которые вносят вклад в процесс крекинга нефтяного сырья на цеолитных катализаторах, мы уже познакомились в предыдущих разделах этой главы. Однако использовать эти представления для анализа превращений отдельных классов углеводородов в крекинге все-таки очень трудно, так как продукты крекинга отличаются очень сложным составом. Первые работы Планка и Росин-ского [161, 297] по крекингу газойля, выкипающего в интервале 260—400° С, показали, что замена алюмосиликатного катализатора на цеолиты типа X дает следуюгцие преимущества 1) более высокую активность, которая сохраняется даже при повышенных содержаниях остаточного кокса, 2) более высокую селективность по бензину (Сз+) и снижение выхода газа (С4-) и кокса, 3) более высокую стабильность при термических и термопаровых обработках, характерных для процесса регенерации катализатора. Эти преимущества становятся еще более заметными при использовании в качестве катализаторов кальций-аммонийной и редкоземельно-аммонийной форм цеолита X. Моску и Моне [148] исследовали влияние жесткости термических и термопаровых обработок катализаторов РЗЭ-Х и РЗЭ- на эффективность крекинга газойля, выкипающего при 272—415° С. Они пришли к выводу, что удаление наиболее сильных кислотных центров в высокотемпературных условиях благоприятно сказывается на повышении выходов бензина. Для того чтобы рассмотреть причины повышения селективности по бензину, обратимся к последовательности превращения газойля, кинетическая модель которого [схема (71)] была разработана Уикманом и Нейсом [298]. В соответствии с этой моделью при первичном крекинге (эта стадия на схеме обозначена символом происходит образование бензина и некоторого количества газа, а также кокса, тогда как при вторичном крекинге (А ,) расщеплению подвергается бензин. [c.109]

    В настоящей работе была обследована возможность изучения механизма первичного акта каталитического крекинга по действ11ю и распределению углерода меченых добаво . Таким путем были получены первые, пока неоднозначные указания на цеппо11 характер этого процесса. Для вторичных реакций низших олефинов и парафинов найдены закономерности, связывающие характер реакции с числом атомов углерода в молекуле. Уточнена роль прямого гидрирования олефинов парафинами и перераспределение водорода с участием кокса. Вместе с ранее установленным деструктивным алкилированием олефинов — это три характерных вторичных процесса, не изменяющие числа газовых молекул в продуктах крекинга. [c.160]

    Полученные нами данные по обмену могут быть использованы для уточнения механизма крекинга углеводорода на алюмосиликатах. Оказалось, что скорость процесса обмена ниже, чем скорость тех реакций, которые мы изучили, — реакции крекинга и реакции изомеризации циклогексена. Эти результаты показывают, что упрощенное представление о механизме каталитического крекинга как кислотно-протонного каталитического процесса неверно. Если бы образовался ион карбония с последующим распадом путем обмена ионами водорода между углеводородом и катализатором, то тогда нужно было бы ожидать, что окончание процесса обмена должно было быть связано с прекращением тех процессов, которые протекают на катализаторе. А в действительности мы видим, что процесс происходит достаточно хорошо и тогда, когда обмен полностью прекращается. Наша работа заставляет пересмотреть такие упрощенные представления о механизме алюмоснликатного катализа. Возможно, что алюмо-кремпевая кислота является не кислотой бренстедтовского типа, а льюисовского, и ион карбония, если он возникает, тоже особого типа, который может получиться при взаимодействии углеводорода с кислотой льюисовского типа. [c.168]

    В связи с таким поведением алюмосиликатов при прокаливании возникает вопрос, не может ли началом, действующим при каталитическом действии алюмосиликатов при крекинге углеводородов, являться не монтмориллонит или подобное ему соединение, а смесь аморфных окислов алюминия и кремния. Такая смесь заключает в себе значительное количество энергии, которая, как известно, проявляется при кристаллизации компонентов данной аморфной смеси и констатируется в виде экзотермического эффекта на кривых нагревания при термографическом анализе. Эта энергия, по моему предположению, и обусловливает (ускоряет) реакцию расщепления углеводородов по радикальному механизму. Действующим началом при всех вторичных реакциях крекинга являются неагре-гированные молекулы свободной окиси алюминия, как это, например, было доложено Г. М. Панченковым при превращении циклогексена. Эти вторичные реакции крекинга протекают по ионному механизму за счет хемосорбции воды окисью алюминия. [c.172]


Смотреть страницы где упоминается термин Механизмы реакций крекинга каталитического: [c.159]    [c.362]    [c.152]    [c.2]    [c.188]    [c.41]    [c.188]    [c.447]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.58 , c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Карбониевый механизм реакций каталитического крекинга

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Каталитические реакции расщепления углеводородов Кинетика и механизм реакций каталитического крекинга над активными алюмосиликатами.— А. В. Фрост и А. В. Очкин

Каталитический крекинг Крекинг каталитический

Кинетика и механизм реакций каталитического крекинга над активными алюмосиликатами

Крекинг каталитический

Крекинг каталитический механизм

Механизм каталитического крекинга и других каталитических реакций углеводородов, протекающих с участием ионов карбония

Механизм реакции каталитической

Реакции каталитические

Реакции крекинга

Установление механизма реакции каталитического крекинга изопропилбензола



© 2024 chem21.info Реклама на сайте