Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ступени массообменных аппаратов

    Эффективность ступени по Мерфри представляет собой отношение изменения концентрации распределяемого компонента в одной из фаз на данной ступени массообменного аппарата к изменению концентрации в этой фазе, которое имело бы место, если бы конечная концентрация в ней соответствовала равновесию с конечной концентрацией в другой фазе. Так же, как коэффициенты массопередачи, общие высоты и числа единиц переноса, эффективность ступени по Мэрфри может выражаться для любой из фаз. Если использовать обозначения, приведенные на рис. П1.1, то эффективность по Мэрфри п-й ступени будет определяться следующими уравнениями  [c.55]


    Другой причиной улучшения показателей работы массообменных аппаратов в нестационарном режиме является увеличение движущей силы. Суть этого эффекта для насадочных и тарельчатых аппаратов состоит в том, что при циклическом сливе жидкости со ступени (полном или частичном) и относительно быс фой замене ее свежей жидкостью режим на этой ступени приближается к режиму идеального вытеснения, обладающему максимально возможной движущей силой. Наиболее интенсивным режим работы аппарата будет тогда, когда время цикла примерно равно среднему времени пребывания жидкости на ступени. [c.303]

    Важным этапом расчета массообменных аппаратов является определение коэффициента полезного действия контактного устройства, так как от к. п. д. зависит число реальных ступеней контакта, а следовательно, и уровень капитальных и эксплуатационных затрат. К. п. д. зависит от многих параметров — гидродинамических, конструктивных, физико-химических. Наиболее достоверными можно считать экспериментальные данные, полученные в сопоставимых условиях на опытно-промышленных установках, а также данные обследования промышленных аппаратов и созданные на их основе корреляции.. [c.326]

    При расчетах массообменных аппаратов используют также понятие о теоретической ступени контакта (теоретической тарелке), под которой понимают такое контактное устройство, которое обеспечивает получение равновесных потоков фаз, покидающих контактную зону. Схема такой ступени представлена на рис. ХП-6. [c.227]

    Если поверхность фазового контакта массообменного аппарата геометрически неопределима, основной технической характеристикой его может служить объем, высота или число ступеней фазового контакта. [c.259]

    Как известно, для абсорбции легко растворимых газов достаточно двух-трех теоретических ступеней контакта. Для этих целей разработан ряд простых массообменных аппаратов, обеспечивающих необходимую степень разделения при большой производительности по газу. В аппарате с фонтанирующей насадкой (рис. 2.91) газ, поступая через штуцер 2, перемещается вверх по аппарату и поднимает шаровую насадку /, которая фонтанирует в коническом расширителе 5, обеспечивая контакт газа с жидкостью. Последняя поступает в аппарат через коллектор 4. Для предотвращения уноса шаровой насадки из аппарата предусмотрена решетка 3. [c.163]


    Удобный графо-аналитический вариант расчета противоточных массообменных аппаратов по числу ступеней изменения концентраций предложен А. Н. Плановским [104, 2, 3]. [c.308]

Рис. 10.5. К расчету противоточных массообменных аппаратов по числу ступеней изменения концентраций. Рис. 10.5. К <a href="/info/1582533">расчету противоточных массообменных</a> аппаратов по <a href="/info/14406">числу ступеней</a> изменения концентраций.
    Диффузионную модель используют преимущественно для описания структуры потоков в аппаратах, не разделенных на ступени, например в массообменных аппаратах с непрерывным контактом фаз (см. главы X и XI.) [c.126]

    В зависимости от вида контакта между жидкими фазами экстракторы, как и другие массообменные аппараты, бывают 1) ступенчатые, где изменение состава фаз происходит скачкообразно, от ступени к ступени, из которых состоит аппарат 2) дифференциально-контактные, в которых изменение состава фаз приближается к непрерывному. [c.538]

    Рассмотрим общую систему уравнений для установки, состоящей из К произвольных секций (/ = 1, 2,. .., к) и показанной на рис. П-50. Каждая секция может рассматриваться как ступень противоточного массообменного аппарата, имеющего Ж/ тарелок, и как теплообменник. В любую из таких ступеней может подаваться [c.163]

    В массообменных аппаратах ступенчатого типа (например, в вертикальных аппаратах с горизонтальными перегородками-тарелками) в каждой ступени происходит взаимодействие фаз (см. разд. 16.53), а по выходе из ступени-их разделение. Проведение процесса при непрерывном и ступенчатом взаимодействии фаз существенно зависит от направления относительного движения фаз (прямоток, противоток и др.) и гидродинамической структуры их потоков. [c.12]

    Объемные коэффициенты массопередачи. В уравнениях (15.36) и (15.37) коэффициенты массопередачи и входящие в них коэффициенты массоотдачи [см. уравнения (15.35) и (15.38)] отнесены к поверхности контакта фаз. Вместе с тем определение этой поверхности в промышленных массообменных аппаратах (в отличие от поверхностных теплообменников) часто затруднительно (при массовом барботаже, в разбрызгивающих аппаратах и т.п.). Поэтому при расчете массообменных аппаратов обычно прибегают к различным приемам, позволяющим рассчитывать аппарат, минуя необходимость определения поверхности контакта фаз. В этом случае основной технической характеристикой аппарата может быть принят его объем V, или высота Я, или число ступеней фазового контакта. [c.29]

    Определите высоту массообменного аппарата с помощью теоретической ступени изменения концентрации. [c.42]

    Наиболее распространен в инженерной практике второй метод — определение рабочей высоты массообменных аппаратов по требуемому числу так называемых теоретических тарелок, или теоретических ступеней контакта. Теоретической тарелкой называется однократный контакт взаимодействующих потоков, завершающийся достижением фазового равновесия. Этот метод расчета особенно нагляден применительно к секционированным, или ступенчатым, аппаратам (рис. 1Х-15, а). В последних одна из фаз (например, жидкая) стекает сверху вниз, последовательно проходя через некоторое число поперечных распределительных перегородок (тарелок), на каждой из которых удерживается слой жидкости определенной высоты. Избыток жидкости, поступающей с вышележащей тарелки, непрерывно стекает на нижележащую. Вторая фаза (например, газовая, паровая) движется вверх навстречу потоку жидкости, барботирует через все ее слои на тарелках и покидает аппарат в верхнем его сечении. Если предположить, что в результате интенсивного массообмена на каждой тарелке покидающие ее фазы приходят в равновесие, то рассматриваемый процесс можно изобразить в диаграмме у—х, начертив на ней предварительно равновесную и рабочую линии (рис. 1Х-15, б). [c.452]

    Для процессов физической абсорбции используют, как правило, противоточные аппараты с непрерывным или ступенчатым контактом, в которых состояние, близкое к равновесию, достигается только на одном из концов аппарата, а в рабочей зоне протекают интенсивные процессы массообмена с максимально возможной движущей силой. Такие аппараты называются массообменными. В подразделе 1.4.1 применительно к процессу десорбции были рассмотрены два типа таких массообменных аппаратов насадочные и тарельчатые колонные аппараты. Эти аппараты также эффективны при проведении процесса разделения газов при достаточно большой высоте они обеспечивают практически любое технологически обоснованное число теоретических ступеней разделения. [c.41]

    Наиболее простое конструктивное оформление многоступенчатого аппарата достигается в том случае, когда движение жидкости по ступеням контакта происходит под действием силы тяжести. При этом контактные устройства (тарелки) располагаются по вертикали одно над другим и массообменный аппарат выполняется в виде колонны. [c.13]


Рис. 6.2. Схема потоков пара и жидкости на ступенях контакта многоступенчатого массообменного аппарата. Рис. 6.2. <a href="/info/25917">Схема потоков</a> пара и жидкости на <a href="/info/325533">ступенях контакта</a> <a href="/info/637144">многоступенчатого массообменного</a> аппарата.
    Пленочные безроторные аппараты уже получили достаточно широкое распространение. Гораздо менее известны роторно-пленочные тепло- и массообменные аппараты. Жидкая фаза протекает через такой аппарат или отдельную его ступень в виде жидкостной пленки, как в пленочных безроторных аппаратах. В то же вре(мя на обе фазы или на любую одну из них накладывается вращательное движение, передаваемое от специального вращающегося устройства — ротора. [c.7]

    Роторно-пленочные массообменные аппараты, согласно классификации, введенной В. В. Кафаровым [2], одновременно относятся к классу аппаратов с внешним подводом энергии (благодаря наличию в них вращающегося устройства — ротора) и к классу аппаратов с фиксированной поверхностью межфазового контакта. Таким образом, им присущи конструктивные признаки и пленочных (безроторных) аппаратов, и роторных распылительных колонн [3]. В аппаратах последнего типа также имеется ротор, но жидкая фаза в них распределяется в объеме массообменной ступени не в виде пленки, а в виде струй и капель. [c.7]

    Из рассмотренного перечня условий проведения ионообменных процессов следует, что имеется значительная общность в математических описаниях и, следовательно, в методах анализа и расчета изотермических процессов ионного обмена и адсорбции. Действительно, как и в адсорбционных процессах, здесь возможно использование общих методов расчета массообменных процессов на базе понятий ступени изменения концентрации, чисел и высоты единиц переноса. Используются также уравнения массопередачи и массоотдачи, понятие движущей разности концентрации и экспериментальные корреляции для зависимости коэффициентов массоотдачи р от основных параметров массообменного процесса. Основы такого метода расчета аппаратов рассмотрены выше на примере процессов адсорбции. Недостатки общего метода расчета массообменных аппаратов применительно к процессам ионного обмена прежние расчет проводится только для всего аппарата в целом без анализа ситуации во внутренних точках недостаточная физическая обоснованность и, как следствие, малая точность расчета величины коэф- [c.256]

    Для пользования методом кинетической кривой необходимо знать величину Еу (или Е . Обычна массообменный аппарат, состоящий из последовательно соединенных ступеней, работает в целом по принципу противотока, однако на ступенях возможно любое (но, как правило, одинаковое) взаимное направление движения фаз — прямоток, противоток, перекрестный ток и т. д. Величина Е зависит от взаимного направления движения фаз и степени перемешивания каждой фазы на ступени (тарелке). [c.428]

    В точке С, на выходе из первой теоретической тарелки, газовая фаза с концентрацией целевого компонента ур встречается с жидкой фазой, концентрация целевого компонента в которой х1<х . И вновь начинается переход целевого компонента из газовой фазы в жидкую до установления нового равновесия. Повторив описанные построения, получим треугольник СРЕ, соот1зетствуюш,ий второй теоретической тарелке, и т. д. Число треугольников, построенных таким образом между рабочей и равновесной линиями от точки В до точки А, соответствует обш,ему числу теоретических тарелок массообменного аппарата. Число теоретических тарелок зависит от расстояния между рабочей и равновесной линиями, т. е. от двил- ущей силы массообменного процесса Ау и Ах. Чем меньше расстояние между рабочей и равновесной линиями, тем меньше движущая сила процесса, тем больше требуется ступеней контакта фаз, т. е. тем больше требуется теоретических тарелок. [c.78]

    Одним из подходов к созданию математических моделей, универсальных по классам аппаратов (ректификация, абсорбция, экстракция, азеотропно-экстрактивная ректификация), является метод декомпозиции, заключающийся в представлении общей модели как совокупности элементарных частей [88, 101]. Декомпозиция технологической схемы, включающей различные массообменные аппараты, состоит в разделении ее на массообменные секции и вспомогательное оборудование и выделении из общей системы уравнений математического описания отдельных частей, соответствующих этим секциям с учетом взаимосвязей между ними. Под массообменной секцией понимается физическая последовательность отдельных массообменных элементов, взаимосвязанных друг с другом и не имеющих промежуточных входов и выходов массы и тепла — все входы и выходы сосредоточены на ее концах. При таком определении количество секций зависит от количества и расположения вводов питания и боковых отборов потоков, а различия между ними заключаются, во-первых, в моделях фазового равновесия и массопередачи на ступенях разделения и, во-вторых, в подсоединяемом к секциям вспомогательном оборудовании для ректификационных колонн это кипятильник и дефлегматор, для экстракционных колонн — декантаторь и т. д. [c.398]

    Практика оптимального проектирования ХТС показывает, что использование технологических критериев эффективности позволяет исключить из дальнейшего рассмотрения существенную часть альтернативных вариантов проектируемой ХТС как весьма далеких от оптимальных. Обычно технологические критерии эффективности дают возможность найти оптимальный вариант на самых низших иерархических уровнях ХТС тем самым значительно сокращается -число вариантов, которые участвуют в принятии решений на более высоких уровнях иерархии. Так, например, при. вы- боре типа аппаратурного оформления ступени контакта для массообменного аппарата ХТС при прочих рав)ных условиях отдают предпочтение типу ступени контакта, с большим коэфф и-циентом маосопередачи, который в этом случае представляет собой технологический критерий эффективности элемента ХТС. -Пр.и заданном числе теоретических ступеней контакта в ректификационной КО -лонне место ввода питания выбирают таким образом, чтобы оно обеспечивало наилучшее качество продукто в разделения, которое здесь также играет роль технологического, критерия эффективности. [c.29]

    Изложенный выше метод расчета кинетики М. применим гл. обр. к аппаратам с непрерывным контактом фаз-наса-дочньш, пленочным, роторным. Эффективность массообменного аппарата м.б. выражена также через число теоретич. ступеней контакта или число теоретич. тарелок, а кинетич. характеристика - через кпд, что часто используется для описания М. в колоннах с дискретным контактом фаз (см. Тарельчатые аппараты), или через высоту, эквивалентную теоретич. ступени контакта. [c.657]

    Кроме уравнений (3.3) — (3.6), характеризую1цих работу всего аппарата, для любого процесса должны соблюдаться уравнения внутреннего материального баланса, описывающие работу части массообменного аппарата или отдельных его ступеней. [c.89]

    В многоступенчатом массообменном аппарате взаимодействие газа и жидкости на каждой ступени может происходить в противотоке, прямотоке или в перекрестном токе фаз. Схема относительного движения потоков на контактном устройстве зависит от способа подачи на него газа и жидкости, условий взаимодействия и способа их отвода из зоны контакта. Наиболее эффективные конструкции контактных устройств сочетают одновременно несколько принципов относительного движения фаз — перекрестного и противоточного (перекрестно-противоточное движение), перекрестного и прямоточного (перекрестнопрямоточное движение). Еще более сложное относительное движение потоков осуществляется на вихревых контактных устройствах — с круговым, вращательным движением потоков. [c.13]

    В., эквивалёнтная теоретической ступени. Высота участка массообменного аппарата, эквивалентная теоретической ступени разделения. [c.86]

    Массообмен в роторных аппаратах с диспергированием и циркуляцией жидкости. Массообмен на контактной ступени в аппаратах рассматриваемого типа протекает в сложной гидродинамической обстановке, различной для разных элементов ступени. Анализ массообмена в роторном аппарате с диспергироваиием жидкости выполнен М. М. Авруцким и Г, П. Соломахой [3]. По условиям [c.169]

    Аналитический метод определения числа ступеней. Рассмотрим противоточный массообменный аппарат, состоящий из п ступеней, принципиальная схема которого показана на рис. Х-13. Пусть расходы фаз постоянны (L = onst и (3 = onst) и распределяемый компонент переходит из фазы (например, газовой фазы) в фазу Ф (например, жидкую фазу). Концентрация фазы Фу на входе в некоторую /7-ую ступень равна ур, а на выходе из нее — у . Следовательно, изменение концентрации этой фазы на ступени составляет ур — —Ур+i)- Обозначим через i/p концентрацию фазы Ф , равновесную с концентрацией другой фазы Хр (см. рис. Х-13) на р-ои ступени. Тогда движущая сила массопередачи на входе в ступень равна ур — у],. [c.425]


Смотреть страницы где упоминается термин Ступени массообменных аппаратов: [c.750]    [c.56]    [c.27]    [c.428]    [c.742]    [c.394]    [c.511]    [c.428]   
Основные процессы и аппараты Изд10 (2004) -- [ c.157 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аппараты массообменные,

Аппараты массообменные, Массообменные аппараты

Массообмен

Ступень

Ступень ступени



© 2025 chem21.info Реклама на сайте