Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиеи сополимеризация

    Наиболее перспективными являются тройные АБС-сополимеры (АБС-пластики), представляющие собой сополимеры акрилопитрила, бутадиена и стирола, получаемые прививкой сополимера стирола и акрилопитрила к полибутадиену. Производство сополимера осуществляют эмульсионным способом в две стадии. На первой стадии проводят полимеризацию бутадиена, на второй — сополимеризацию стирола и акрилонитрила и прививку полученного сополимера к полибутадиену. [c.23]


    Сополимеризация мономеров. Сополимеризация бутадиена со стиролом является основной стадией производства бутадиен-стирольного каучука. Теоретические основы этого сложного процесса подробно изложены в обширной литературе и в гл. 6 настоящей книги. Поэтому в данной главе затрагиваются лишь некоторые [c.243]

    Бутилены. Бутилены играют весьма важную роль в нефтехимической промышленности в основном они используются для синтеза каучуков. Наиболее массовым сырьем для производства синтетических каучуков являются бутилен-1 и бутилен-2 — промежуточные продукты, образующиеся при производстве бутадиена. Сополимеризацией изопрена и изобутилена получают специальный сорт синтетического каучука — бутил-каучук. [c.25]

    В весьма больших количествах хлористый метил применяется в настоящее время в качестве растворителя при производстве бутил-каучука сополимеризацией изобутилена с 2—3% изопрена или бутадиена. При этом он выполняет двоякую функцию с одной стороны, он является растворителем для полимеризующего катализатора (безводного хлористого алюминия) и, с другой, служит разбавителем для проведения реакции. [c.208]

    При сополимеризации бутадиена со стиролом получают полимеры различного строения — блочные и статистические, которые имеют различные физические свойства и предназначаются для различных областей применения. [c.57]

    Бутадиен-стирольные каучуки — продукт сополимеризации 1,3-бутадиена и стирола — наиболее распространенный тип каучуков, синтез которых осуществляется в эмульсии под влиянием свободных радикалов. [c.243]

    В последнее время были развиты методы растворной полимеризации для получения чередующихся (альтернантных) сополимеров [16]. Такой подход к проблеме сополимеризации позволяет получить полимеры принципиально новой структуры и, возможно, избежать проблем, связанных с композиционной неоднородностью сополимера. Альтернантные сополимеры бутадиена с нитрилом акриловой кислоты уже выпускаются в промышленном масштабе. Показано, что в том случае, когда эти сополимеры содержат звенья бутадиена в гране-конфигурации, полимерные цепи способны к ориентационной кристаллизации [17, 18]. Для получения резин с оптимальными физико-механическими свойствами необходимо получение альтернантных сополимеров с достаточно высокой молекулярной массой ([г)] = 2—2,5). [c.63]

    Полимеризация при высоких температурах порядка 130— 160 °С [31]. Повышение температуры способствует сближению констант сополимеризации бутадиена и стирола [9], однако даже при 130—160 °С этот эффект не столь значителен, чтобы таким приемом исключить полное образование блоков полистирола. [c.273]


    Технологический процесс производства АБС-со-полимера эмульсионным методом состоит из следующих стадий подготовка исходных компонентов, полимеризация бутадиена, отделение непрореагировавшего бутадиена, сополимеризация, высаждение сополимера из латекса, отжим, промывка и сушка АБС-сополимера. [c.23]

    На основании полученных экспериментальных данных разработаны оптимальные составы реакционных смесей для сополимеризации бутадиена со стиролом и бутадиена с а-метилстиролом при 5°С, позволяющие достигать требуемой конверсии мономеров в производственных условиях за 10 ч. Рецептуры смесей для получения наиболее распространенных, бутадиен-стирольных и бутадиен-а-метилстирольных каучуков при 5°С приведены в табл. 1 [18—20]. Компоненты, входящие в состав приведенных в табл. 1 реакционных смесей, применяются и для получения других марок каучуков, различающихся содержанием стирола (или а-метилстирола), жесткостью, содержанием масла, сажи, типом антиоксиданта и пр. [c.251]

    Указанная зависимость микроструктуры от температуры полимеризации сохраняется и для бутадиеновой части цепи в процессах радикальной сополимеризации бутадиена со стиролом, а-ме-тилстиролом, акрилонитрилом и др. [c.177]

    Полимеризация с использованием каталитических систем, позволяющих сближать значения констант сополимеризации бутадиена и стирола. К таким системам относятся литийалкилы или металлический литий с различными модификаторами, а также органические соединения щелочноземельных металлов. [c.272]

    Полибутадиены с высоким содержанием ц с-1,4-звеньев (более 96%) характеризуются значительной склонностью к кристаллизации, что существенно ухудшает морозостойкость вулканизатов. Один из способов повышения морозостойкости указанных каучуков— введение в полимерную цепь некоторого количества (5—15%) чужих звеньев. Это может быть достигнуто путем сополимеризации бутадиена с изопреном [53] или 1,3-пентадиеном [54]. [c.183]

    Константы сополимеризации в присутствии 4,8 моль/л диэтило-вого эфира составляют = 1,78, гз = 0,11 в присутствии 3 моль/л тетрагидрофурана Г = 1,030, Гг = 0,744 (соответственно для бутадиена и стирола) [6, 11]. [c.273]

    Сополимеризация диеновых мономеров (бутадиена со стиролом или бутадиена с акрилонитрилом) в присутствии третьего мономера, содержащего группы, способные ингибировать процессы окисления [63—65]. В качестве третьего компонента при полимеризации могут быть применены соединения, содержащие вторичные аминные группы, или фрагменты 2,6-ди-грет-бутилфенола, например [c.641]

    На рис. 3 показано влияние содержания компонентов окислительно-восстановительной системы на скорость сополимеризации бутадиена со стиролом при 5°С [12]. Скорость сополимеризации определяется количеством сульфата железа (II), с увеличением содержания которого до 0,05 ч. (масс.) конверсия мономеров 60% может быть достигнута за 2 ч. Эквимолекулярное соотношение трилон Б — сульфат железа (II) является наиболее благоприятным для скорости полимеризации при содержании гидроперекиси около [c.250]

    Константы сополимеризации бутадиена со стиролом на литийалкилах в углеводородных средах [c.271]

    Влияние содержания, в ч. (масс.) на 100 ч. (масс.) сомономеров, трилона Б (а), РеЗО -ТНзО (б) и ронгалита (а) на кинетику сополимеризации бутадиена и стирола  [c.250]

    Константы сополимеризации бутадиена и акрилонитрила при 50°С составляют для бутадиена>1 = (0,350,40) (0,01-ь 0,02), для акрилонитрила гг = (0,04 Ч-0,05) 0,01, а при 5°С соответственно Г1 = 0,18 0,08, Г2 = 0,02—0,03 [10]. [c.359]

    Состав реакционной смеси, в ч. (масс.) на 100 ч. (масс.) мономеров, для сополимеризации бутадиена со стиролом или а-метилстиролом при 5°С [c.252]

    ОСОБЕННОСТИ СОПОЛИМЕРИЗАЦИИ БУТАДИЕНА [c.270]

    Ом является основным мономером для синтетических каучуков. При радикально-цепной сополимеризации бутадиена со стиролом, 1а-метилстиролом или акрилонитрилом образуются сополимеры, в макромолекулах которых беспорядочно чередуются звенья исходных веществ [c.483]

    Неопрен , полимер хлоропрена (2-хлорбутадиепа-1,3) больше какого-либо другого синтетического каучука напоминает натуральный каучук. Хлоропрен получается из ацетилена и соляной кислоты. Годовое производство его составляет около 75 ООО т. Нитрильные каучуки, известные в Германии как Буна N каучуки, получаются путем сополимеризации смесей, состоящих из 75—50 частей бутадиена-1,3 и 25—50 частей нитрила акриловой кислоты (акрилонитрила), Hj СН. N. Эти каучуки устойчивы к действию тепла и к набуханию в маслах, смазках и растворителях. Годовое производство их ]je bMa невелико — около [c.211]

    Сополимеризация бутадиена со стиролом проводится следующим образом бутадиен и стирол нодают для полимеризации в облицованный изнутри стеклом автоклав в соотношении 70 30. Процесс ведется при хорошем перемешивании, в присутствии катализатора, эмульгатора и регулятора полиме- [c.259]

    БНК — продукт сополимеризации бутадиена и акрилонитрила. Макромолекулы каучука состоят из статистически распределенных звеньев бутадиена и акрилонитрила с преобладанием транс-звеньев бутадиена [1]  [c.356]


    В производстве каучуков сополимеризация бутадиена с акрилонитрилом проводится в водных эмульсиях под влиянием соединений, распадающихся на свободные радикалы. [c.358]

    Сополимеризация бутадиена с акрилонитрилом протекает по механизму радикальной полимеризации (см. гл. 6). [c.359]

    С целью создания каучуков, содержащих группы, способные превращаться при вулканизации в солевые с регулируемой скоростью, предложено вводить сложноэфирные группы, отстоящие от основной полимерной цепи на два и более атома [3]. Такие каучуки получаются эмульсионной сополимеризацией бутадиена или его смесей со стиролом, а-метилстиролом или акрилонитрилом и мономеров, содержащих сложноэфирную группу, в которых двойная связь находится в кислотной части сложноэфирной группы и присоединена к ней через органический радикал, содержащий два или более атома в цепи. Наибольшее значение среди таких мономеров приобрели метакрилаты, синтез которых основан на технически доступном сырье и протекает практически количественно [4]  [c.405]

    Реактор для сополимеризации бутадиена со стиролом представляет собой вертикальный цилиндрический сосуд из хромоникелевой сталп, снабженный мешалкой (рис. УП-13). Эмалированные сосуды не используют из-за низкого коэффициента теплопроводности материала. [c.326]

    Ботьшинство полимерных материалов получается из низко-молекуляриых соединений путем применения двух отличных по принципу методов синтеза. Один из них — с помощью реакции полимеризации, в ходе которой происходит уплотнение одинаковых молекул (например, молекул этилена в полиэтилен). С помощью реакций полимеризации получают синтетические каучуки. Так, бутадиеновый каучук получают по способу С. В. Лебедева из этилового спирта путем сополимеризации бутадиена со стиролом, акрилонитрилом, изобутилена с изопреном и т. д. получают другие разновидности каучуков, обладающие рядом ценных свойств. С помощью реакций сополимериза-цни (сочетание звеньев двух или трех типов различных полимеров) получают также разнообразные виды пластмасс (сополимер винилхлорида с винилацетатом, с винилиденхлори-дом, сополимер этилена с пропиленом и др.). [c.389]

    Эмульси01Н1ая радикальная полимеризация 0,30 массовой доли стирола и 0,70— бутадиена. 2. Конденсация 0,70 массовой ДС ЛИ стирола II 0,30 — бутадиена. 3. Блочная сополимеризация. 4. Со полимеризация стирола и бутадиена в высококипищем органическом растворителе. [c.279]

    В отдельных работах указывается, что реакции эти можно заметно ускорит , применением высокого давления (1000—5000 ат) [38]. Температуры, при которых конденсации идут с подходящей скоростью, варьируют в очень широких пределах — от комнатной до 200°. Наиболее общим условием, рекомендуемым для синтетических работ, является нагревание в течение 10—30 час. при 100—170° в растворителе ароматического характера, например в ксилоле. Важно помнить, что во многих случаях с реакцией Дильса-Альдера конкурирует реакция свободно-радикальной сополимеризации олефинов и диолефинов, поэтому часто желательно добавление в такие системы антиокислителей. В качестве примера такой конкурирующей реакции (при соответствующим образом подобранных условиях) может служить реакция бутадиена и акрилонитрила, приводящая к образованию каучукоподобного полимера или тетрагидробензо-нитрила. Кроме того, как будет показано, конденсации по Дильсу-Аль-деру — практически обратимые реакции, поэтому продукты конденсации могут распадаться при более высоких температурах. По этой причине образование и пиролиз таких продуктов присоединения иногда оказываются удобным путем для проведения химического выделения, как, например, при очистке полициклических углеводородов [9, 20]. Однако температура, при которой происходит пиролиз, и выход регенерированного исходного вещества колеблются в широких пределах для разных систем. Некоторые из факторов, влияющих на это, будут обсуждены ниже более детально. [c.176]

    Окислительно-восстановительные системы являются эффективным средством для интенсификации процесса полимеризации. Так, применяя систему гидроперекись фенилциклогексана — силикат железа — пирофосфатный комплекс железа, в присутствии в качестве эмульгаторов канифолевого мыла и лаурата калия, можно провести сополимеризацию бутадиена со стиролом в эмульсии за [c.140]

    В связи с этим был разработан способ получения нехладотекучего полимера этого типа (СКДЛПР) путем сополимеризации бутадиена с небольшим количеством дивинилбензола, вызывающего образование частично разветвленных макромолекул [64]. Его хладотекучесть составляла всего 7—10 мм/ч. Также получают нетекучий полибутадиен с повышенным содержанием 1,2-звеньев (СКБСР). [c.188]

    Технологическое оформление процесса сополимеризации бутадиена со стиролом подробно описано в литературе [19, 21, 22]. Водные растворы компонентов рецептуры готовят в нержавеющих или гуммированных аппаратах, снабженных перемещивающим устройством и змеевиками для обогрева. Раствор эмульгатора концентрацией около 10% получают путем омыления карбоновых кислот щелочью. Растворы других исходных продуктов имеют, как правило, меньшую концентрацию трилонового комплекса железа— 1—2%, ронгалита — около 2%, диметилдитиокарбамата натрия — около 1%-. Гидроперекись можно подавать в реакционную смесь непосредственно или в виде 3—5%-ной водной эмульсии. Растворы регуляторов — дипроксида или трег-додецилмеркап-тана готовят в стироле или а-метилстироле с концентрацией, определяемой условиями производства. При приготовлении смеси мономеров (часто называемой шихтой ) бутадиен и стирол предварительно освобождают от ингибиторов. Водную фазу получают при перемешивании и последовательной подаче в аппарат деминерализованной воды, растворов эмульгатора, диспергатора и электролита. Водная фаза имеет pH около 10—11. Для лучшей воспроизводимости кинетики сополимеризации и свойств каучука растворы всех исходных продуктов и смесь мономеров готовят и хранят под азотом, так как кислород воздуха, как указано выше, является ингибитором полимеризации. [c.251]

    Технологическая схема процесса сополимеризации бутадиена со стиролом /—емкость для бутадиена 2—емкость для стирола 3—аппарат для приготовления угле-водородной фазы 4—аппарат для приготовления водной фазы 5 —смеситель углеводородной и вояноА фаз 6-1,..., —полимеризаторы 7, Д—отгонные колонны 5—емкость для [c.253]

    В целом ряде работ приводятся констааты сополимеризации бутадиена и стирола в присутствии литийорганических соединений. Значения констант колеблются в широких пределах (табл. 1). [c.270]

    Винилпиридиновые латексы подучают сополимеризацией ви-нилпиридинов (2-винилпиридина, 2-метил-5-винилпиридина и др.) с бутадиеном и стиролом. Благодаря пиридиновым группам повышается адгезия полимера к шинному корду. В СССР выпускают латекс ДМВП-ЮХ (90% бутадиена и 10% метилвинилпиридипа) низкотемпературной полимеризацией в присутствии парафината калия. Разработан латекс ДСВП-15-15 (сополимер бутадиена, стирола и 2-винилпиридина в отношении 70 15 15). [c.606]

    Более целесообразно сближение констант сополимеризации бутадиена и стирола осуществлять путем введения в реакционную среду ионов Na, К, Rb или s. Соединения типа MeOR (в частности, грег-бутилаты К, Na, Rb, s или полимерные соединения, содержащие К), будучи добавлены в небольших количествах к алкиллитию, обеспечивают образование статистического сополимера, при этом структура бутадиеновой части меняется незначительно. Отмечено ускорение гомополимеризации стирола и бутадиена в зависимости от увеличения мольного отношения Me/Li, причем это ускорение больше для стирола, чем для бутадиена. Алкоголяты лития не меняют заметно скорости гомополимеризации бутадиена и стирола [13]. [c.274]

    При использовании для синтеза термоэластопластов дилитий-органических инициаторов в реактор сначала подают диен, а после его исчерпывания — стирол. Другой способ заключается в полимеризации сразу смеси двух мономеров, причем блочное строение полимерных цепей возникает за счет разности констант сополимеризации бутадиена и стирола. Этот прием проще по технологическому оформлению, однако в бутадиеновый блок входит до 8—10% стирола [10], что снижает физико-механические свойства материала. Кроме того, необходимо иметь инициатор с высокой степенью бифункциональности 11]. [c.285]

    Работы по синтезу пропиленоксидного каучука (СКПО) в СССР проводятся во ВНИИСК. Была исследована сополимеризация бинарных смесей окиси пропилена с аллилглицидиловым эфи ром, моноокисью бутадиена и моноокисью диаллила. В качестве катализаторов изучались системы на основе диэтилцинка, триэтил-алюминия и триизобутилалюминия. Лучшие свойства показали сополимеры окиси пропилена с аллилглицидиловым эфиром. Наиболее эффективными оказались каталитические системы на основе триалкилалюминия, содержащие хелатирующий агент—ацетилаце-тон. Были исследованы основные закономерности полимеризации, уточнен состав каталитического комплекса, выбраны оптимальные [c.575]

    Фирма Дженерал Тайр энд Раббер Ко (США) [15] в 1964 г. выпустила в опытных условиях небольшое количество вулканизуемого серой каучука на основе окиси пропилена под маркой дайнаджен, Сополимеризация осуществлялась под влиянием комплексного катализатора, состав которого точно не указывался. В качестве непредельного сомономера могли быть использованы аллилглицидиловый эфир, моноокись бутадиена и другие соединения этого типа. [c.576]

    Thiokel RD тиокол RD (продукт сополимеризации бутадиена и акрилонитрила маслостойкий каучук) [c.666]


Смотреть страницы где упоминается термин Бутадиеи сополимеризация: [c.156]    [c.276]    [c.398]    [c.71]    [c.581]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадие

Стирол сополимеризация с бутадиено



© 2025 chem21.info Реклама на сайте