Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частота сетки

    Одна из первых работ в этой области была посвящена синтезу регулярно построенных сетчатых полиуретанов различной химической природы и разной степени сшивания, полученных на основе сложных полиэфиров и толуилендиизоцианатов, и исследованию их физикохимических и механических свойств Синтезированные полиуретаны представляли собою эластомерные продукты. Для исследования термодинамики набухания более частых и жестких сеток были использованы сополимеры стирола с дивинилбензолом, различающиеся содержанием последнего. Показано, что густота сетки не влияет на сорбционную способность, свободную энергию и энтропию смешения пространственных полимеров до тех пор, пока молекулярная масса отрезка цепи между узлами сетки (Мс) много больше величины термодинамического сегмента. Если эти величины соизмеримы, то свободная энергия и энтропия смешения уменьшаются с увеличением частоты сетки. [c.106]


    Пространственно-сшитые (сетчатые) эластомеры с малой частотой сетки при температуре существенно выше Тс ведут себя как идеальные эластомеры, в которых fu = 0 В идеальном эластомере возникающее при деформации напряжение обусловлено только изменением энтропии. Изменение энтропии происходит за счет выпрямления молекулярных клубков, когда структура эластомера становится более ориентированной. Возникновение ориентации означает уменьшение беспорядка в системе, т. е. уменьшение энтропии  [c.108]

    С], а отсюда и частоту сетки, а по наклону прямой (8.31) найти С2 и оценить количественно степень отклонения структуры сетки от идеальной. [c.116]

    ТОТЫ сетки). По мере увеличения частоты сетки повышаются твердость, температура размягчения, термостойкость и уменьшается растворимость полимера. Эти свойства, ценные в готовых изделиях, затрудняют формование полимерного материала. Поскольку пространственные полимеры не плавятся и не растворяются, из них нельзя формовать волокна и пленки. В то же время часто для повышения термостойкости и улучшения эластичности и других свойств полимеру необходимо придать в готовом изделии пространственное строение. [c.220]

    Влияние частоты сетки, на прочность полимеров 237 [c.237]

    На практике очень часто для предотвращения процессов течения используются реакции сшивания (стр. 67). При этом образуются полимеры пространственного, или сетчатого строения. До последнего времени полагали, что сетчатый полимер представляет собой совокупность макромолекул, между которынгн меюгся поперечные химические связи. Частота сетки характеризуется величиной молекулярного веса отрезка цепи между поперечными связями— узлами сетки или числом молей отрезков цепи между )-злами сетки в единице объема. Эти величины связаны между собой уравнением  [c.237]

    ВЛИЯНИЕ ЧАСТОТЫ СЕТКИ НА ПРОЧНОСТЬ ПОЛИМЕРОВ [c.237]

    Небольшое число поперечных связей не затрудняет распрямления цепей при деформации, а процессы течения исключаются. Поэтому относительное содержание ориентированной или закристаллизованной части При деформации с увеличением частоты сетки [c.237]

    Радиац. облучение применяют для увеличения частоты сетки реактопластов или для придания термопластам сетчатой структуры. В результате такой обработки м. б. повышена тепло- и термостойкость изделий, а также улучшены мех. св-ва материала изделия. [c.12]

    Количественная оценка скорости отверждения возможна по степени конверсии реакционноспособных групп олигомеров или по частоте сетки образующегося трехмерного полимера. Конверсию реакционноспособных групп оценивают методами колебательной спектроскопии, дилатометрии или дифференциального термического анализа, а также химическими методами, например, проведением соответствующих реакций в равновесно набухшем отвержденном материале или контролем количества выделяющихся низкомолекулярных продуктов. [c.115]


    Совместной полимеризацией моноолефинов с диолефи-нами можно регулировать частоту сетки в структуре ионитовой смолы, изменяя этим пористость полимера и его степень набухания. [c.58]

    Прямым синтезом не всегда удается получить полимер пространственного строения. Поэтому синтезируют сначала линейный полимер, а затем из него получают пространственный. При этом можно регулировать частоту сетки и соответственно свойства конечного продукта. Примером такого двухстадийного синтеза пространственного полимера является получение резины (вулканизация каучука). Часто для синтеза пространственных полимеров используют олигомеры. Переход от линейного полимера к пространственному происходит иногда самопроиз-волыю (при хранении или эксплуатации полимера или изделий из него) в результате взаимодействия функциональных групп полимера друг с другом, с различными примесями или с кислородом воздуха. [c.220]

    По мере увеличения частоты сетки равновесная высокоэласти-ческ-ап деформация уменьшается. Образование большого числа по-перечных связей приводит к получению твердого материала, не способного к высокоэластической деформации (эбонит). [c.179]

    Механические свойства полимеров зависят от ряда так называемых структурных модификаций — ориентации макромолекул и надмолекулярных структур, размера последних, наполнения, [[ла-стификации и др. Кроме того, механические свойства зависят от частоты сетки в полимере [c.230]

    В настоящее время взгляды на строение сетчатых полимеров пересматриваются. Их электронно-микроскопическое исследование более сложно, чем исследование линейных полимеров, но уже сейчас имеются сведения о том, что поперечные химические связи образуются не только между макромолекулами, по и между надмолекулярными структурами. Поэтому величина Мо является сугубо эквивалентной величимй, дающей, однако, качественное представление о частоте сетки чем меньше Мс п чем больше значение v/V, тем чаще сетка. [c.237]

    Частота сетки влияет на все механические свойства полимеров. Так, обычно (во всяком случае у аморфных полимеров) с увеличением частоты сетки эластические свойства ухудшаются. Температура стеклования при этом повышается, и полимеры с предель1Ю частыми сетками (эбопнт, резины и др.) при комнатной температуре находятся в стеклообразном состоянии. Изменение прочности аморфных полимеров в зависимости от частоты сетки описывается кривой с максимумом рис. 106). Это показано на примере вулканизатов натурального каучука, ряда некристаллизующихся синтетических каучуков, наполненных резин, полиуретанов. Экстремаль ПЫЙ характер зависимости прочности ог частоты сетки связан с тем, что последней определяется характер протекания ориентационных и Кристаллизационных процессов при деформации полимера. [c.237]

    Кривых зависимости прочности от частоты сетки этих же материалов. Экстремальный характер завнсимости прочности от частоты сетки следует и из теоретического рассмотрения этого во-гфоса. [c.238]

    Положение максимума по оси абсцисс и его высота (максимальная прочность материала) зависят от природы полимера, от его способности к кристаллизацигт, от температуры плавления соответствующего линейного полимера. Чем более склонен полимер к кристаллизации, чем вьние его температура плавления, тем больше высота максимума и тем больше он смещен в область малых частот сетки, В пределе для полимера, легко кристаллизующегося и находящегося при комнатных температурах в кристаллическом состоянии, максимальная прочность наблюдается для образцов линейного полимера. Увеличение частоты сетки приводит, к монотонному снижению прочности, что отчетливо видно па примере гуттаперчи. [c.238]

    Поскольку модели с основу метода, как будет показано ниже, несовершенна. Поэтому, справедливо замечает Флори, оценка частоты сетки полимеров относится к одной из неретештых проблем современной физики полимеров [c.396]

    Исследовате,ли, работающие в области синтеза ионообменных смол, давно стремились создать такие сорбенты, которые по пOj)И-стости приближались бы к лучшим сортам активных углей. Эгу Проблему безуспешно пытались решить путем уменьшения частоты сетки в самом скелете сополимера и использования других мономеров. Плодотворными ока.зались способы, связанные с изме нением техники сополимеризапии и структуры ионита, [c.513]

    Концепция определяющей роли кислотно-основных взаимодействий в катионной полимеризации базируется на том, что рассматриваемый процесс представляет разновидность широкого класса катионных реакций в неводных средах со всеми присущими им основными признаками. В рамках этой концепции и в качестве дополнения к ней следует рассмотреть и другие особенности катионной полимеризации изобутилена, отличающие ее от реакций низкомолекулярных соединений и других реакщ й образования полимеров. В обобщенной формулировке достижения в регулировании катионной полимеризации изобутилена и конструировании полимерных молекул получили название макромолекулярной (или молекулярной) инженерии [25, 247]. Становление этого многозначительного термина произошло вначале при рассмотрении радикальной и анионной полимеризации, а в период 1975-80 гг. и в катионной полимеризации. Макромоле-кулярная инженерия означает регулируемое конструирование головных и хвостовых групп, повторяющихся звеньев, микроструктуры, ММ и ММР, природы разветвлений, частоты сетки, блок-, графт- и звездообразных структур. Большинство из этих положений применимо и для ПИБ. Элементами макромолекулярной инженерии являются конролируемые элементарные акты (инициирование, обрыв, передача) и квазиживой механизм роста цепей. Так как этой теме посвящены известные обзоры [25, 247], можно ограничиться лишь кратким рассмотрением проблемы. Реализация элементов макромолекулярной инженерии связана с двумя исходными моментами направленным подбором комплексных каталитических систем, определяющих характер реакций инициирования, передачи и обрыва цепи, и близостью свойств исходного мономера и образующихся полимерных соединений из класса олефинов  [c.110]


    У полимеров, в зависимости от химического строения, определяющего энергию внутри- и межмолекулярного взаимодействия, молекулярной массы и молекулярной неоднородности, переход из стеклообразного состояния в вязкотекучее разделен большим или меньшим интервалом высокоэластического релаксационного состояния. У аморфных линейных полимеров этот интервал широкий. Аморфные разветвленные полимеры в зависимости от температуры также могут существовать во всех трех релаксационных состояниях. А.морфные полимеры сетчатого строения (сшитые) не могут находиться в вязкотекучем состоянии, а иногда и высокоэластическом. Способность сетчатых полимеров к размягчению зависит от частоты сетки. Так, густосетчатые полимеры существуют только в стеклообразном состоянии, тогда как у редкосетчатых полимеров возможно и высокоэластическое состояние. [c.149]

    Термостойкость полимеров зависит от структуры макромолекул, а термоокнслительная стабильность и негорючесть — от типа обрамляющих цепи органических групп. Поэтому очень важно сочетать в молекуле полимера оптимальную частоту сетки и подходящие боковые группы. В этом случае наибольший эффект можно ожидать от полиорганосилоксанов указанных выше структур с метильнымн и феннльными обрамляющими группами. Хотя метильные группы окисляются легче, чем фенильные, при их замещении кислородом потери полимера незначительны. [c.16]

    Разновидностью метода фракционирования на колонке является гель-хроматография [86]. В качестве разделительного вещества применяют органические или неорганические вещества (например, силикагель) пористой структуры с размером пор, зависящим от плотности сшивок и условий получения. Для фракционирования полимеров, растворимых в воде, чаще всего применяют набухший в воде декстран с различной степенью сшивания (сефадекс). Для растворов полимеров в органических растворителях применяют сшитые полистиролы или сополимеры метилметакрилата с этилен-гликольдиметакрилатом. Образец полимера растворяют, заливают в колонку и элюируют, используя тот же самый растворитель. Небольшие молекулы полимера свободно диффундируют внутрь геля. Размеры некоторых молекул оказываются настолько большими, что им не удается проникнуть внутрь пор, в результате чего они первыми выходят из колонки при элюировании. Продолжительность элюирования фракций возрастает с уменьшением размера макромолекул. Существует критическое значение молекулярной массы, ниже которого макромолекулы полимера могут проникать в поры сетки и поэтому могут быть разделены. Молекулы большего размера уже не могут быть разделены, так как они не могут диффундировать в гель. Частота сетки геля и критическое значение молекулярной массы связаны между собой простой зависимостью чем чаще сетка, тем меньше критическое значение молекулярной массы. [c.83]

    В процессе смешения одновременно с разрушением надмолекулярной и молекулярной структур каучука возникают сверхсетки — гетерогенные структуры, образованные наполнителем и каучуком с наполнителем, от которых зависят механические свойства как резиновых смесей, так и резин. Узлы взаимодействия в этих сверхсетках могут быть образованы как физическими, так и ковалентными химическими связями [4]. О степени взаимодействия каучук — наполнитель обычно судят по объему и частоте сетки са-же-каучукового геля (СКГ), определяемых экспериментальным путем.  [c.69]

    Кривых зависимости прочности от частоты сетки этнх же материалов. Экстремальный характер зависимости прочности от частоты сеткн следует и из теоретичес1сого рассмотрения этого во-Гфоса. [c.238]


Смотреть страницы где упоминается термин Частота сетки: [c.202]    [c.237]    [c.238]    [c.238]    [c.396]    [c.396]    [c.397]    [c.514]    [c.516]    [c.111]    [c.240]    [c.188]    [c.179]    [c.230]    [c.237]    [c.237]    [c.238]    [c.396]    [c.397]    [c.513]    [c.516]    [c.56]   
Физикохимия полимеров (1968) -- [ c.237 , c.395 , c.396 ]

Физикохимия полимеров Издание второе (1966) -- [ c.237 , c.395 , c.396 ]

Физикохимия полимеров (1968) -- [ c.237 , c.395 , c.396 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние частоты сетки на механические свойства полимеров

Влияние частоты сетки на прочность полимеров

Показатель частоты сетки

Прочность и частота сетки

Сетки

Частота сетки густота сетки

Частота сетки пространственных

Частота сетки пространственных полимеров



© 2025 chem21.info Реклама на сайте