Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры линейные аморфные

Рис. 7.1. Типичные термомеханические кривые для линейных — аморфных (а) и кристаллизующихся (б) полимеров и макросетчатого (а) полимера Рис. 7.1. Типичные <a href="/info/15557">термомеханические кривые</a> для линейных — аморфных (а) и кристаллизующихся (б) полимеров и макросетчатого (а) полимера

    Значительно лучшим, хотя также качественным приближением, дающим представление о молекулярном механизме, ответственном за вязкоупругое поведение линейных аморфных высоко-полимеров, является четырехкомпонентная механическая модель Алфрея (рис. 1.5), состоящая из последовательно соединенных моделей Максвелла и Кельвина—Фойгта. [c.20]

Рис. 11.7. Петля гистерезиса линейного аморфного полимера (стрелки на кривых указывают направление процесса деформации). Рис. 11.7. <a href="/info/23276">Петля гистерезиса</a> <a href="/info/1507929">линейного аморфного полимера</a> (стрелки на кривых указывают <a href="/info/6146">направление процесса</a> деформации).
    Для линейных аморфных полимеров термомеханическая кривая имеет более сложный характер (рис. V. 3). Между температурными областями стеклообразного (область I) и вязкотекучего (область III) состояний появляется еще одна температурная область, в которой полимер находится в особом высокоэластическом состоянии. В этом состоянии в полимере под действием небольших усилий развиваются очень большие обратимые деформации, характеризующиеся малыми значениями модуля упругости (в Ю — 10 раз меньше, чем у обычных твердых тел). [c.140]

    Если построить зависимость модуля упругости от температуры, то получится весьма характерная кривая, форма которой оказывается различной для разных типов полимеров — линейных аморфных, полукристаллических или эластомеров (поперечно сшитых аморфных полимеров). [c.154]

    Важная проблема растворимости в основе решается для полимеров так же, как и для обычных растворов. Как правило, линейные аморфные полимеры растворимы лучше кристаллических. Большая величина молекул высокомолекулярных веществ и гибкость их цепей, а также малая скорость диффузии приводят к тому, что процесс растворения протекает своеобразно. Первой стадией растворения аморфного полимера является набухание молекулы растворителя проникают в объем полимера и раздвигают полимерные цепи. Одновременно лишь небольшое число полимерных молекул переходит в жидкий растворитель, образуя раствор малой концентрации. Процесс набухания протекает до полного использования растворителя с образованием гомогенного раствора. Это имеет место, однако, лишь при наличии неограниченной взаимной растворимости жидкого растворителя и аморфного полимера. [c.257]


Рис. 3.4. Диаграмма нафузка - удлинение(ст - с) для твердого линейного полимера в аморфном состоянии Рис. 3.4. Диаграмма нафузка - удлинение(ст - с) для <a href="/info/1273950">твердого линейного</a> полимера в аморфном состоянии
    Результаты экспериментального изучения анизотропии модуля упругости при вытяжке линейных аморфных полимеров неоднозначны. Кажущееся противоречие экспериментальных данных объясняется тем, что хотя анизотропия модуля упругости должна существовать всегда, у разных полимеров она выражена по-разному. [c.193]

    Рассмотренные термомеханические кривые (рис. V. 3 и V. 4) отражают зависимость деформируемости линейных аморфных полимеров от температуры. [c.142]

    Справедливость рассмотренной теории высокоэластичности подтверждена многочисленными экспериментами. Сравнение результатов кинетической теории высокоэластичности полимерных цепей и сеток показывает, что модули упругости для цепей и для сеток определяются одинаковыми выражениями. В связи с этим возникло представление о том, что и у линейных аморфных полимеров, находящихся в высокоэластическом состоянии, имеется пространственная сетка, образованная не химическими связями, а переплетениями цепей. Существование пространственной сетки зацеплений у линейных аморфных полимеров приводит к тому, что в высокоэластическом состоянии у ннх проявляется равновесная высокоэластическая деформация (при не слишком высоких напряжениях и температурах). Эта аналогия в вязкоупругом поведении сшитых (сетчатых) и линейных полимеров особенно ярко проявляется в случае не очень большой продолжительности эксперимента, так как иначе возни- [c.88]

    Типичным для полимеров является аморфное фазовое состояние, которому соответствуют три различных физических состояния линейных полимеров стеклообразное, высокоэластическое и вязкотекучее, переходящие одно в другое при повышении температуры, переходы совершаются при температурах стеклования Tg и текучести Т . [c.296]

    В зависимости от температуры линейные аморфные полимеры могут находиться в стеклообразном, высокоэластическом и вязкотекучем состояниях Стеклообразное состояние характеризуется наличием колебательного движения атомов, входящих в состав цепных молекул полимера. Перемещения участков цепных молекул в этом состоянии не наблюдается. В высокоэластическом состоянии наряду с колебательным движением атомов происходят колебательно-вращательные движения звеньев, вследствие чего цепная молекула получает возможность, в известных пределах, проявлять свою гибкость. В вязкотекучем состоянии цепные молекулы полимера могут перемещаться целиком. [c.110]

    XII. 2. ЛИНЕЙНЫЕ АМОРФНЫЕ ПОЛИМЕРЫ [c.302]

    Тепловое расширение полимеров может быть также оценено по изменению их удельного объема = р , где р — плотность. Эта характеристика используется при переработке пластмасс из расплава, когда важно определить некоторые технологические параметры процесса производства изделий (объем впрыска при литье под давлением, сечение экструдата на выходе из формующей головки экструзионного агрегата, динамика усадки изделия при формовании из расплава). Интересно, что в этом случае аморфно-кри-сталлический состав полимера вызывает непропорциональность зависимости = ф(Т) на участке до температуры плавления (рис. 51, кривые ПЭНП и ПЭВП). После перехода в полностью аморфное состояние зависимость становится линейной. Аморфный ПВХ (рис. 51) ведет себя в полном соответствии с отмеченными ранее закономерностями. [c.135]

    У твердых полимерных стекол падение прочности с уменьшением молекулярной массы связано не только с увеличением роли межмолекулярных сил в процессе разрыва, но и с возрастанием хрупкости за счет потери гибкости короткими цепями полимера. Низкомолекулярные аморфные линейные полимеры с молекулярной массой 10 ООО—20 ООО легко крошатся и дают трещины, а температура их хрупкости смещается к высоким температурам. Твердый полимер, получающийся после сшивания линейного, обладает большей прочностью и меньшей хрупкостью. [c.129]

    Таким образом, общая картина поведения макромолекул вблизи границы раздела с твердым телом, развитая нами для линейных аморфных полимеров, оказывается справедливой для трехмерных и кристаллизующихся полимеров. При этом нужно отметить, что важно само существование границы раздела. Действительно, в случае кристаллического полимера нет границы раздела с твердым телом, но есть граница раздела с воздухом, тем не менее отчетливо проявляется влияние этой границы, и мы уже не можем говорить об энергетическом взаимодействии с поверхностью, так как все изменения обусловлены действием только энтропийных факторов. [c.172]


    Известно, что исследование структуры трехмерных полимеров крайне затруднено. Между тем именно эти исследования имеют наибольшее практическое значение. Если, как было установлено, структура линейного аморфного полимера, образующегося в присутствии стеклянного волокна, отличается от структуры полимера, полученного в отсутствие наполнителя, то естественно ожидать различий в структуре сетчатых полимеров, образующихся в присутствии наполнителя и без него. В качестве простейшей модели был выбран сетчатый сополимер стирола с дивинилбензолом и наполнитель — тонкодисперсный стеклянный порошок [85]. Были исследованы сополимеры, содержащие 3, 10 и 15% дивинилбензола и 10, 30, 50 и 70% (масс.) наполнителя. [c.41]

    Важной характеристикой пространственной сетки зацеплений является параметр Мс — молекулярная масса среднего участка цепи, заключенного между соседними узлами сетки зацеплений. Представление о существовании пространственной сетки зацеплений в линейных аморфных полимерах распространено достаточно широко 17—20]. Сведения о параметре М , для ряда полимеров приведены в обзоре Портера и Джонсона [20]. Рассмотренные варианты кинетической теории высокоэластичности хорошо согласуются с экспериментальными данными лишь в области малых деформаций. При больших деформациях наблюдается существенное расхождение. Это расхождение связано с исходными положениями и допущениями кинетической теории. Действительно, в этой теории не учитывается вклад изменения внутренней энергии в величину упругой силы, что противоречит ряду экспериментальных фактов, имеющих место при больщих деформациях. Использование гауссовского распределения также должно приводить к расхождению с экспериментом в области больших деформаций. Особенностью (а может быть и недостатком) кинетической теории высокоэластичности является то, что в ней практически не учитывается межмолекулярное взаимодействие, которое в высокоэластическом состоянии хотя и невелико, но все-таки существует. Тем не менее кинетическая теория высокоэластичности добилась большого успеха в описании и объяснении ряда физических (в том числе и механических) свойств полимеров, в установлении связи между пространственной структурой и физическими свойствами каучукоподобных полимеров. Эта теория является одной из наиболее хорошо разработанных областей физики полимеров. [c.89]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Еще более отчетливо проявляется влияние характера межмолекулярного взаимодействия на динамические модули упругости одного и того же полимера, находящегося в разных физических состояниях. В стеклообразном состоянии, когда межмолекулярное взаимодействие достаточно велико, динамические модули упругости большинства линейных аморфных полимеров имеют значения порядка 10 МПа. В высокоэластическом состоянии,, когда энергия межмолекулярного взаимодействия существенно меньше, динамические модули упругости тех же полимеров составляют 0,1 — 1 МПа. [c.258]

    Сопоставление частотных зависимостей фактора диэлектрических потерь для дипольно-сегментального процесса сшитых и линейных аморфных полимеров показало, что у сшитых поли- [c.99]

    Представления о сеточном строении линейных аморфных полимеров позволяют объяснить особенности диаграмм изометрического нагрева. При нагревании в полимере протекают два конкурирующих процесса, один из них ответственен за повышение напряжений, другой—за их релаксацию. Первый процесс связан с обычной кинетической упругостью, а второй — с распадом молекулярной сетки. В ориентированном полимере возникают силы, стремящиеся вернуть образец в первоначальное неориентированное состояние. Этому препятствует вандерваальсово взаимодействие между макромолекулами. При сравнительно низких температурах [c.192]

    В результате ориентационной вытяжки линейных аморфных полимеров возникает анизотропия их физических свойств вдоль и поперек направления вытяжки. При этом для различных свойств подобная анизотропия выражена по-разному. Например, для двойного лучепреломления и механической прочности анизотропия довольно значительна, а для модуля упругости — гораздо слабее, если только полимер не доведен до сверхориентиро-ванного состояния, когда начинается фибриллизация. Впрочем, фибриллизация чаще наблюдается у некристаллизующихся полу-жестких полимеров и всегда — у кристаллизующихся. Кроме того, анизотропия свойств зависит от типа полимера- По сравнению с кристаллическими аморфные полимеры при вытяжке ориентируются плохо даже при больших степенях вытяжки остается довольно большой разброс направлений ориентации сегментов макромолекул. [c.193]

    Цель работы. Получение кривых релаксации напряжелия сшитых и линейных аморфных полимеров при различных температурах, определение равновесного модуля полимеров, расчет спектра времен релаксации полимеров. [c.164]

    Полиэтилен. Строение полиэтилена схематически представлено на рис. 2. Степень кристалличности, зависящая от числа боковых цепей в молекулах полимера, закономерно возрастает от обычного полиэтилена, приготовленного полимеризацией под высоким давлением, к полимеру, получаемому при применении новых твердых катализаторов. Боковые цепи, связанные с главной цепью полимера, создают аморфные зоны, так как нарушают регулярность строения, обусловливающую кристалличность продукта. Кристалличность обычного промышленного полиэтилена вследствие значительной разветвленности его строения, составляет примерно 60—70% [82]. Полиметилен, полученный разложением дпазометана, имеет линейную цепь, состоящую из метиленовых групп кристалличность его превышает 95% [54]. Между обеими этими крайностями находятся новые типы полиэтиленов со степенью кристалличности в пределах 70-95%. [c.290]

    Линейная зависимость IgiPne/PN,) от — Ig-Pw, харач-терна, в первую очередь, для линейных аморфных полимеров исключением являются полукристаллические [c.228]

    Растворение линейных аморфных полимеров в отличие от низкомолекулярных веществ начинается с набухания [76]. Молекулы растворителя проникают в полимерную структуру посредством диффузии и образуют набухший поверхностный слой между растворителем и исходным полимером. В случае позитивных резистов достигается минимальная деформация рельефа из-за слабого набухания области, соседней с экспонированной, которая удаляется растворителем. В случае негативных резистов желательно минимальное набухание облученных областей при экстракции растворимой фракции (золя) полимера из структурированной нерастворимой фракции (геля). В результате набухания и увеличения объема полимера происходит распрямление макромолекул и диффузия сольватированных полимерных клубков в растворитель. Скорость набухания и растворения уменьшается с ростом ММ гюлимера. Коэффициент диффузии оказывает влияние на кинетику растворения, а термодинамический параметр растворимости — на толщину набухшего слоя [77]. Скорость растворения и степень набухания определяются концентрационной зависимостью коэффициента диффузии растворителя в полимер [78]. Факторы, определяющие подвижность растворителя в полимерной матрице (тактичность, и характер термообработки полимера, размер молекул растворителя), влияют на растворимость полимера нередко больше, чем его ММ [79]. [c.50]

    Все три физических состояния высокомолекулярных линейных аморфных полимеров можно наблюдать, снимая термомеханическую кривую, показывающую деформации от температуры (рис. И. 5). КажХое физическое состояние имеет свою природу и особенности. [c.23]

    В качестве связующих могут применяться как линейные (аморфные или кристаллические), так и сетчатые полимеры. Используемые в современных твердых топливах связующие большей частью являются полимерами с сетчатой структурой, и лишь в некоторых ТРТ используются кристаллические связующие с линейной структурой. В табл. 2 представлены обобщенные данные о химическом строении связующих ТРТ. Все приведенные связующие классифицированы по двум категориям отверждающиеся и неотверждающиеся. Отверждающиеся связующие разделены на две группы в зависимости от того, характеризуется ли механизм отверждения образованием поперечных связей в результате химического взаимодействия с отверди-телями или он обусловлен физическими процессами — пластифи- [c.39]

    Линейные аморфные полимеры в зависимости от температуры могут находиться в трех достаточно четко разграниченных физических состояниях [146, 162—165] стеклообразном, высокоэластическом и вязкотекучем, ограниченных температурой стеклования Тс и температурой текучести Тт- Кроме этих основных физических состояний при более детальном изучении особенностей деформации в зависимости от температуры выделяют еще два промежуточных (переходных) состояния вынужденно-эластическое и вынужденно-пластическое [166, 167]. Первое из них является частью о бласти стеклообразного состояния па границе с высокоэластическим, а второе — частью области высокоэластичеокого состояния на границе с вязкотекучим. [c.53]

    Под высокоэластическими материалами принято понимать линейные и пространственно-структурированные полимеры или материалы на их основе, обладающие высокоэластичностью и гибкостью в широком температурном интервале, включая и низкие температуры. В зарубежной литературе в последнее время часто применяется эквивалентный термин— эластомеры , который, по нашему мнению, менее удачен. Наиболее типичными представителями высокоэластических материалов являются резины и каучуки, а также другие линейные аморфные и слабокристаллические полимеры с низкой температурой стеклования. [c.7]

    Каучуки (как и линейные аморфные полимеры, находящиеся в высокоэластическом состоянии) обладают малой сжимаемостью и вследствие этого имеют коэффициент Пуассона, близкий к 0,5. Это означет, что объем каучука при деформации практически не изменяется, т. е. У=Уо и (0 = 1. Подставляя эти значения в формулу (3.52) и учитывая, что К=М, для образца, имеющего форму куба, объем которого равен единице, имеем  [c.88]

    Процессы перехода к состоянию термодинамического равновесия в полимерах осуществляются за счет самых различных видов молекулярного движения. Каждому виду молекулярного двил екия соответствует определенный релаксационный процесс, который характеризуется своим временем релаксации. Для того чтобы наблюдать и исследовать какой-либо релаксационный процесс в полимерах и соответствующий ему тип молекулярного двил<еиия, необходимо, чтобы время воздействия на полимер (или время наблюдения) было соизмеримо со временем релаксации. Следовательно, для изучения релаксационных процессов акустическими методами (а это один из наиболее распространенных методов их изучения) необходимо, чтобы период звуковых колебаний был того же порядка, что и время релаксации полимера. Рассмотрим линейный аморфный полимер, находящийся в высокоэластическом состоянии. В этом случае число возможных конформаций, которые мол ет принимать каждая макромолекула, достаточно велико, и в полимере реализуются весьма разнообразные виды молеку-лг рного движения. Пусть в таком полимере распространяются звуковые колебания, частоту которых можно изменять в широких пределах. Если частота звуковых колебаний очень мала, т. е. период звуковых колебаний очень велик по сравнению с временем релаксации са- . ых больших кинетических элементов макромолекул, то энергия звуковых колебаний, которую получат за период элементарный объем полимера, будет быстро перераспределяться по всему объему полимера вследствие сегментальной подвижности микроброуновского типа (диффузии сегментов макромолекул). В этом случае процесс рассеяния энергии носит квазиравновес-ный характер, механические потери невелики, и полимер быстро восстанавливает свои размеры и форму пос.п -снятия приложенного внешнего напрял ения. Естественно, что и динамический модуль упругости полимера (а также скорость звука в нем) будет очень малым, т. е. такого л<е порядка, как и жидкости. [c.254]

    Аномальная зависнмость Е от ф, при которой Е убывает при возрастании плотности пространственной сет- ки, по-видимому, тесно связана с определенным порядком расположения цепей в аморфных полимерах ниже Tg. Представим себе линейный аморфный полимер, содержащий реакционноспособные группы, который находится в стеклообразном состоянии. Естественно, что в таком полимере возможно существование антикристаллических кластеров, т. е. областей с несколько более упорядоченным расположением цепей. Наличие та.ких областей, видимо, и обусловливает высокие (10 — 10 МПа) значения динамичеокого модуля линейных аморфных полиамеров ниже Tg). [c.276]

    Все полимерные материалы в определенном температурном интервале способны к большим необратимым деформациям — пластическому течению. Для линейных аморфных полимеров этот температурный интервал — по суш,еству вся область температур, лежащая выше температуры стеклования. Для кристаллических полимеров — это область выше температуры плавления. Разумеется, в обоих случаях сверху эта область ограничивается температурой разложения (для термопластичных материалов) и температурой структурирования для термореактивных или вулканизующихся материалов. [c.15]


Смотреть страницы где упоминается термин Полимеры линейные аморфные: [c.36]    [c.258]    [c.186]    [c.187]    [c.198]    [c.250]    [c.24]    [c.395]    [c.138]    [c.241]    [c.81]    [c.66]   
Термомеханический анализ полимеров (1979) -- [ c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Аморфные полимеры

Линейные полимеры



© 2025 chem21.info Реклама на сайте