Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучуки молекулярная структура

    Микроструктура полимерных цепей. Важными элементами молекулярной структуры синтетических каучуков, совокупность которых принято называть микроструктурой полимера, являются строение, пространственная конфигурация и характер взаимного расположения п чередования основных звеньев, образующих лекулярные цепи. [c.19]

    При этом методе углеводородная цепь жидкого каучука сохраняет структуру исходного полимера. В частности, озонолиз цис-1,4-полибутадиена и последующие реакции озонидов должны привести к получению стереорегулярных олигодиолов или олигодикарбоно-Бых кислот. Однако попытка [46] осуществить эту реакцию не привела к успеху. Полученные путем озонолиза цс-1,4-полибута диена и последующего восстановления озонидов литийалюминийгидридом олигодиолы имели очень низкую молекулярную массу (300—400). При уменьшении количества присоединяющегося озона падал выход олигомеров и увеличивался выход твердого нерастворимого продукта. [c.428]


    Были выявлены закономерности связей между важнейшими элементами молекулярной структуры эластомеров и их физическими и вязкоэластическими свойствами в широком интервале температур. При этом были установлены количественные корреляции между температурой стеклования и микроструктурой каучуков данного химического строения, изучен характер влияния молекулярно-массового распределения на температурный коэффициент эластичности для ряда каучуков, а также исследованы кристаллизационные процессы в эластомерах и пути их регулирования (см. гл. 2, 4). [c.15]

    Выше мы кратко рассмотрели зависимость от молекулярной структуры эластомеров технологических свойств сажевых смесей и основных физико-механических свойств вулканизатов. Можно указать на ряд других свойств резин, имеющих важное значение при конструировании различных резино-технических изделий, такие как усталостная выносливость, ползучесть, остаточные деформации и др., улучшение которых связано с получением однородных материалов — однородных сеточных структур, что в свою очередь, опирается на внедрение каучуков с определенным молекулярным составом. Весьма существенным является также использование растворимых вулканизующих групп и интенсификация процессов смешения. [c.92]

    Молекулярное строение сополимеров типа СКЭП и СКЭПТ сильно зависит от типа применяемой каталитической системы и условий проведения процесса полимеризации. Типичные параметры молекулярной структуры промышленных каучуков СКЭП и СКЭПТ приведены в табл. 6. [c.62]

    МОЛЕКУЛЯРНАЯ СТРУКТУРА КАУЧУКОВ, ПОЛУЧЕННЫХ СПОСОБОМ [c.54]

    Важной составной частью работ по синтезу каучуков с необходимым комплексом свойств явились структурные исследования, направленные, с одной стороны, на изучение зависимости молекулярной структуры полимеров различных типов от условий их синтеза и, с другой, на установление -закономерностей влияния основных молекулярных параметров на физические, физико-механические и технологические свойства полимеров. Развитие этих исследований в значительной мере опиралось на труды А. П. Александрова, П. П. Кобеко, В. А. Каргина и П. Флори, в которых были сформулированы фундаментальные принципы строения молекулярных цепей и релаксационной природы механических и вязко-, эластических свойств полимеров. [c.14]

    Карозерс высказал предположение, согласно которому образование характерной для каучука молекулярной структуры происходит не путем полимеризации изопрена, а путем конденсации метилпропилкетона по следующей схеме  [c.31]


    ЭЛАСТОМЕРОВ С ИХ МОЛЕКУЛЯРНОЙ СТРУКТУРОЙ. МОЛЕКУЛЯРНАЯ СТРУКТУРА ОТДЕЛЬНЫХ ТИПОВ СИНТЕТИЧЕСКИХ КАУЧУКОВ [c.54]

    В этом разделе мы приводим результаты исследований связи между молекулярной структурой различных эластомеров, полученных методом полимеризации в растворе, и условиями их синтеза, а также данные о молекулярной структуре некоторых каучуков, выпускаемых в опытном и промышленном масштабе. [c.56]

    Глава 3 Связь механизма и условий синтеза эластомеров 54 с их молекулярной структурой. Молекулярная структура отдельных типов синтетических каучуков [c.749]

    Наличие двойных связей в молекулах каучука приводит к возникновению пространственной изомерии ввиду различного расположения метиленовых групп относительно двойных связей. Для выяснения молекулярной структуры каучука был использован рентгеноструктурный анализ. [c.50]

    Вследствие сложности своей молекулярной структуры и ненасыщенности каучуки очень легко изменяют молекулярную структуру под влиянием различных физических факторов — при нагревании, действии солнечных лучей, электрических разрядов, ультразвука, а также под влиянием различных химических веществ. Изменение молекулярной структуры и молекулярного веса неизбежно приводит к изменению физических и технических свойств каучука. [c.58]

    Одним из важнейших методов в этом отношении является испытание по Муни, широко распространенное в международной прак -тике для определения как качества каучуков, так и принадлежности их к той или иной марке. Типичный прибор для контроля свойств эластомеров и прогнозирования их технологических характеристик, для оценки различий в молекулярной структуре отдельных партий каучуков - вискозиметр Муни - реализует принцип ротационной вискозиметрии со сменными измерительными системами конус - плоскость, плоскость - плоскость, цилиндр в цилиндре. [c.440]

    ЧТО указывает на то, что кислота не присоединяется к каучуку, а вызывает лишь изменение его молекулярной структуры, ири этом количество двойных связей в молекулах уменьшается почти в 2 раза. [c.61]

    К важнейшим полимерам нефтехимического синтеза относятся синтетические каучуки общего и специального назначения, а также полиэтилен, политрифторэтилен, поливинилхлорид, поливиниловый спирт, полистирол, полиэтилентерефталат, находящие широкое применение на практике. ИК-спектры указанных полимеров изучены в диапазоне частот 400—4000 см и установлены спектрально-структур-ные корреляции. По трем полимерам — полиэтилену, поливинилхлориду и полиэтилентерефталату — проведена серия экспериментов по изучению действия ионизирующего излучения на молекулярную структуру полимеров. [c.86]

    Установлено, что при окислении каучуков происходят два противоположных по своему влиянию на молекулярную структуру процесса деструкция и структурирование. Соотношение скоростей деструкции и структурирования зависит от структуры каучука и различных условий процесса окисления. Уменьшение концентрации кислорода ведет к уменьшению скорости деструкции натурального каучука и к повышению скорости структурирования. При нагревании в вакууме натуральный каучук, весьма склонный в деструкции, подвергается структурированию При окислении дивинилового каучука, наоборот, с уменьшением концентрации кислорода скорость структурирования понижается. [c.64]

    При вулканизации натрий-дивинилового каучука также происходят одновременно два процесса, противоположных по своему влиянию на молекулярную структуру, но деструктирующее влияние кислорода оказывается незначительным. Вследствие особенности молекулярного строения натрий-дивинилового каучука кислород при вулканизации, так же как и сера, играет главным образом роль структурирующего агента. [c.73]

    Современная теория вулканизации, получившая всеобщее признание, объясняет происходящее при вулканизации изменение свойств каучука образованием сложной пространственной сетчатой структуры вулканизата. Под влиянием нагревания, а также воздействия серы, кислорода или других структурирующих веществ происходит усложнение молекулярной структуры каучука в результате образования поперечных химических связей между молекулами, т. е. структурирование каучука. Это могут быть химические связи посредством атомов серы, кислорода или валентные химические связи атомов углерода отдельных цепей. Кроме того, в результате вулканизации увеличивается межмолекулярное взаимодействие. [c.77]

Рис. 17. Молекулярная структура каучука Рис. 17. <a href="/info/2170">Молекулярная структура</a> каучука
    Таким образом, способность каучука деформироваться и восстанавливаться после прекращения деформации связана с особенностью молекулярной структуры каучука и постоянным тепловым движением молекулярных звеньев, приводящих молекулы к свернутому состоянию. [c.101]


    При достижении равновесия определенной величине внешней растягивающей силы соответствует некоторая определенная степень растяжения молекулярных звеньев. Но для достижения такого равновесия и перегруппировки молекулярных звеньев в соответствии с величиной внешней силы, ввиду сложности молекулярной структуры, требуется достаточно большой промежуток времени, зависящий от типа молекулярной структуры (типа каучука) и от температуры. Изменение величины деформации всегда отстает от изменений деформирующей силы, благодаря этому деф ормации имеют релаксационный характер. [c.102]

    Эластичность по отскоку и модуль резин из силоксанового каучука мало изменяются под действием температуры. Незначительное изменение этих показателей объясняется высокой гибкостью полисилоксановой цепи, малым межмолекулярным взаимодействием и особой молекулярной структурой каучука. [c.113]

    Полярные каучуки —дивинил-нитрильные, хлоропреновые — обладают повышенным сопротивлением старению и окислению. Сопротивление старению неполярных каучуков определяется главным образом особенностями их молекулярной структуры, положением двойных связей и количеством их в основной цепи. Двойные связи в боковых цепях натрий-дивиниловых каучуков [c.189]

    Причина усадки заключается в эластическом восстановлении резиновой смеси. При прохождении резиновой смеси через зазор между валками молекулы каучука под действием внешних сил распрямляются и располагаются вдоль направления выхода листа с каландра, вследствие этого молекулярная структура каучука приобретает упорядоченный характер. После прекращения действия внешних сил в результате хаотического движения молекулярных звеньев происходит разрушение упорядоченной молекулярной структуры, молекулярные звенья снова принимают хаотическое расположение, а молекулы каучука переходят к своей обычной свернутой форме. Таким образом, причиной усадки является особенность молекулярной структуры каучука, наличие молекул большой длины, состоящих из отдельных звеньев, ко- [c.284]

    Важной составной частью работ по синтезу каучуков с необходимым комплексом свойств явились структурные исследования, направленные, с одной стороны, на изучение зависимости молекулярной структуры полимеров различных типов от условий их синтеза, и [c.15]

    Проведенные исследования позволили установить характер влияния условий полимеризации на молекулярно-массовое распределение (ММР) и содержание разветвленных макромолекул и сшитых структур для основных типов каучуков и предложить рациональные пути получения полимеров с оптимальными молекулярными параметрами. Были выявлены закономерности связей между важнейшими элементами молекулярной структуры эластомеров и их свойствами в широком интервале температур. Установлены количественные корреляции между температурой стеклования и микроструктурой каучуков данного химического строения, изучен характер влияния ММР на температурный коэффициент эластичности для ряда каучуков, а также исследованы кристаллизационные процессы в эластомерах и пути их регулирования. [c.16]

    Характеристика поведения каучуков и резиновых смесей при их переработке является первостепенной проблемой в производстве каучука [2], Для этого имеются в распоряжении методы, начиная от реологических испытаний с точным определением таких зависимостей, как кривые вязкости [3]кривые течения, нормальные коэффициенты упругости [4] заканчивая простыми методами испытания технологических свойств, как, например испытания по Муни или Дефо. Кроме того, аналитические методы исследования молекулярной структуры каучуков позволяют предсказать или объяснить поведение материалов при переработке. [c.436]

    Метод оценки технологичности каучуков должен быть практичным, достаточно простым и экспрессным. Он должен выявлять различия в каучуках, выпускаемых различными фирмами. Ротационные вискозиметры хорошо чувствуют эту разницу, но они очень дороги и способны обеспечить только 10-15 испытаний в день. Если же ожидается, что в молекулярной структуре каучука будут небольшие колебания, то предпочтение надо отдать методам, реализующим небольшую скорость сдвига., [c.447]

    Различные каучуки и смеси на их основе ведут себя при переработке весьма специфично, что обусловлено особенностями их реологических свойств, зависящих, в свою очередь, от молекулярно-структурных характеристик каучуков и надмолекулярной организации (НМО) [1]. Молекулярная структура и НМО определяются прежде всего химической природой каучука, регулярностью его цепей, характером межмолекулярных взаимодействий, а также типом микроблоков НМО. [c.68]

    В настояшее время в опытном и промышленном масштабе выпускаются как изопреновые (СКИЛ, карифлекс и др.), так и бутадиеновые (СКДЛ, интен и др.) каучуки литиевой полимеризации. Для улучшения технологических свойств этих полимеров необходимо регулирование их ММР на рис. 2 приведены кривые ММР (гель-хроматограммы) полиизопренов типа карифлекс. а в табл. 2 — данные по молекулярной структуре ряда марок промышленных полибутадиенов литиевой полимеризации. [c.57]

    Статистические бутадиен-стирольные каучуки растворной полимеризации (ДССК) имеют повышенное содержание цисЛЛ-звеньев, они характеризуются также более линейным строением макромолекул и более узким ММР. В табл. 3 приведены сравни-, тельные данные по молекулярной структуре эмульсионных и растворных статистических бутадиен-стирольных каучуков промышленных марок .  [c.57]

    Другие каучуки, получаемые методом растворной полимеризации. Методом полимеризации в растворе получают морозостойкие и бензомаслостойкие каучуки на основе циклических окисей— сополимеры окиси пропилена и аллилглицидилового эфира (СКПО), а также сополимеры окиси этилена и эпихлоргидрина [14, 15]. Эти каучуки выпускаются в промышленном масштабе. Предполагается, что для сополимеров типа СКПО ухудшение эластических свойств в области низких температур, по-видимому, связано с образованием стереорегулярных — изотактических блоков пропиленоксида и другими особенностями их молекулярной структуры. В случае сополимеров окиси этилена и эпихлоргидрина, где сомономеры входят в полимер в соизмеримых количествах (обычно 1 1), ухудшение эластических свойств может быть связано с образованием длинных блоков обоих сойолимеров, которые способны к образованию кристаллической фазы. [c.62]

    Значительная разветвленность цепей каучуков эмульсионной полимеризации является одной из двух основных причин того, что их индекс полидисперсности MJMn значительно превышает 2— величину, характерную для наиболее вероятного ММР [34]. Вторая причина этого связана со спецификой расхода регулятора молекулярной структуры. Даже в отсутствие реакций разветвления постепенное изменение по ходу полимеризации отношения концентрации регулятора к концентрации мономера в зоне реакции приводит к расширению ММР каучука. Этот эффект выражен тем сильнее, чем выше скорость расхода регулятора. Использование сравнительно медленно расходующегося регулятора позволяет поддерживать ММР каучука достаточно узким [35, 36]. С другой стороны, такой же эффект может быть достигнут и путем введения быстро расходующихся регуляторов (например, диизопропил-ксантогендисульфида) порциями по ходу процесса [35, 36]. Оба эти принципа регулирования используются при промышленном синтезе отечественных бутадиен-стирольных и бутадиен-нитрильных каучуков. [c.66]

    В некоторых работах приводятся слишком большие (>10) значения индекса полидисперсности каучуков эмульсионной поли- ер1 ации [12, 37, 38]. Появление аномально высоких значений MjMn обусловлено в большинстве случаев наличием в полимере микрогеля. Молекулярная масса микрогеля равна нескольким десяткам миллионов, поэтому даже незначительное содержание его в полимере сильно увеличивает Яу,. Возникновения микрогеля и макрогеля далеко не всегда удается избежать даже при использовании регулятора молекулярной структуры. Рыхлый микрогель, а в некоторых случаях и макрогель, содержатся в бутадиен-нитрильных каучуках [33, 38]. Микрогель, содержащийся в бутадиенстирольном каучуке типа 1502, подробно описан в работе [39]. [c.67]

    Большую роль в процессах пластикации играет молекулярная структура каучуков (степень разветвленности, молекулярная масса и другие параметры), так как вероятность разрывов или активации химических связей пропорциональна общему количеству переплетений, которое данная макромолекула способна обра- [c.76]

    Для цолимерных соединений типа каучука, целлюлозы и др. установлены следующие типы молекулярных структур линейные, трехмерные, изогнутые, разветвленные, скрученные. Исходя из этого, объясняют особенности поведения высокополимеров в твердом состоянии их хрупкость, упругие, пластические свойства и др. [113]. [c.15]

    При полимеризации в растворах, применяя специальные сте-реоспецифические катализаторы (литий, алкиллитий) или комплексные металлорганические катализаторы, получают каучук стереорегулярной структуры, называемой ис-1,4-полибутадиено-вым каучуком (СКД-синтетическпй каучук дивиниловый), в котором молекулярные звенья присоединены в положении 1,4 ( голова к хвосту )  [c.226]

    Изопреновый (синтетический) стереорегулярный каучук СКИ-3 получается путем полимеризации изопрена в среде инертного растворителя в присутствии комплексного катализатора (типа триалкилалюминий + четыреххлористый титан). Он представляет собой стереорегулярный цыс-1,4-полиизопрен, содержащий 92— 99, Ь звеньев 1,4-г<ис-изомериой конфигурации. По своей молекулярной структуре и техническим свойствам он практически рав- [c.38]

    Среди продуктов распада озонидов, кроме левулиновых производных, Пуммереру удалось обнаружить ряд веществ — муравьиную и угольную кислоту (1—2%), уксусную кислоту и уксусный альдегид (до 2%) и метилглиоксаль (0,4%), образование которых можно объяснить наличием конечных групп в молекуле каучука, имеющих структуру, отличную от основных изопентеновых структурных групп молекулы каучука. Если предполагать, что молекулярная цепь каучука имеет строение  [c.49]

    Ранее считалось, что гибкие цепные молекулы полимеров хаотически переплетаются между собой и образование регулярных кристаллических структур, свюйственных обычным органическим веществам, для полимеров совершенно невозможно. При этом допускалось, что отдельные участки цепных молекул три кристаллизации располагаются параллельно друг другу, образуя кристаллические области, размер которых мал по сравнению с длиной молекулярных цепей, и поэтому молекулы участвуют в образовании многих кристаллов. Иллюстрацией такого представления являются схемы молекулярной структуры аморфного и кристаллизованного каучука, приведенные на рис. 17. [c.85]

    Для лакокрасочных покрытий, предназначенных для защиты металлов от коррозии в атмосферных условиях, важной характеристикой является паропроницаемость. По мнению ряда исследователей, проникновение влаги через полимерные материалы протекает по-разному в одних существуют постоянные зазоры и поры, через которые в основном проникают молекулы воды, в других же зазоры возникают кратковременно в результате теплового движения макромолекул. Типичным представителем первого класса полимеров являются фенолоформальдегидные смолы, производные целлюлозы, полистирола, полиэтилена. Ко второму классу относятся полимеры типа каучуков, обладающие значительной упругостью. Влагопроницае-мость, а также влагопоглощение (водонабухание) находятся в сильной зависимости от структуры органических полимеров. При этом различают полимеры с трехмерной структурой и линейные, Полимеры с трехмерной структурой, например фенольные смолы, отличаются сильно разветвленной молекулярной структурой, вследствие чего молекулам водяного пара и воды приходится преодолевать большой путь. Поэтому влагопрони-цаемость фенольных смол относительно мала. [c.115]

    После того как было изучено регулярное строение натурального каучука, исследователи неоднократно предпринимали попытки синтезировать полимеры, которые бы обладали сходными с ним структурой и свойствами. Многочисленные опыты полимеризации диенов дали интересные результаты, позволившие сделать теоретические выводы о влиянии температуры, инициаторов и роли поли-меризационной среды на способ соединения молекул мономера в цепи. Так, например, была высказана мысль о том, что более высокая температура способствует присоединению мономера по принципу А-Цис, а более низкая — по принципу , А-гранс это объяснялось различием в свободных энергиях активации этих типов реакций. И хотя долгое время не удавалось доказать справедливость этой гипотезы для полимеризации диенов, именно благодаря ее использованию был достигнут дальнейший прогресс в области получения полимеров с регулярной молекулярной структурой. Только недавно, с применением высокочувствительных физических методов, в особенности ядерного магнитного резонанса, было установлено, что при полимеризации виниловых мономеров с заместителями, имеющими большой объем, в условиях низких температур образуются соединения с повышенным содержанием фракций син-диотактической структуры. [c.8]

    Среди других аналитических методов, характеризующих пе-рерабатываемость каучуков, в первую очередь следует назвать дифференциальную сканирующую калориметрию (ДСК), ядерный магнитный резонанс (ЯМР) и термогравиметрический анализ (ТГА). Их применение ограничено тем, что наблюдаемые различия в молекулярной структуре каучуков не во всех случаях свидетельствуют о различиях в технологических показателях. Это связано с различиями в чувствительности, с которой отдельные показатели реагируют на изменение свойств. Однако одновременное использование нескольких методов представляется весьма плодотворным. [c.457]

    Это явление, наблюдающееся при переработке эластомеров, как известно, получило название пластикация. В зависимости от молекулярной структуры эластомера, содержания добавок изменения молекулярной структуры и вязкости могут быть различны. Так, линейный СКД, СКЭП и некоторые другие эластомеры в обычных условиях переработки не способны к пластикации, т. е. при их переработке средняя молекулярная масса каучука и эффективная вязкость практически не меняются. Переработка пластицирующихся каучуков (НК, СКИ-3, наирит, СКЭПТ, БСК и др.) сопровождается уменьшением средней молекулярной массы, изменяется исходная полидисперсность, уменьшается эффективная вязкость. Поскольку явления деструкции сопровождаются структурированием и в первом и втором случаях происходит увеличение разветвленности полимеров. [c.31]

    В процессе смешения одновременно с разрушением надмолекулярной и молекулярной структур каучука возникают сверхсетки — гетерогенные структуры, образованные наполнителем и каучуком с наполнителем, от которых зависят механические свойства как резиновых смесей, так и резин. Узлы взаимодействия в этих сверхсетках могут быть образованы как физическими, так и ковалентными химическими связями [4]. О степени взаимодействия каучук — наполнитель обычно судят по объему и частоте сетки са-же-каучукового геля (СКГ), определяемых экспериментальным путем.  [c.69]


Смотреть страницы где упоминается термин Каучуки молекулярная структура: [c.63]    [c.82]    [c.16]    [c.358]   
Технология резины (1967) -- [ c.58 , c.86 ]

Технология резины (1964) -- [ c.58 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Каучуки молекулярный вес

Структура молекулярная



© 2025 chem21.info Реклама на сайте