Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рост цепи механизм

    В настоящее время можно предположить лишь общую последовательность процессов при катионной полимеризации эпоксидов, механизм большей части которых мало изучен. Инициирование включает по меньшей мере две стадии быстрое образование комплекса мономер — катализатор и более медленное превращение такого комплекса в собственно активный центр роста цепи. Механизм и кинетика второй стадии, на которой происходит раскрытие эпоксидного кольца по реакции первого или второго порядка, не ясны. Нет единого мнения относительно природы активного центра полимеризации, который может иметь оксониевую, карбониевую или некую промежуточную форму. Это вносит, естественно, неясность в механизм продолжения цепи в зависимости от того, оксониевую или карбониевую природу имеет активный центр, реакция будет следовать механизму или 8])г1 соответственно. Процессы ограничения роста цепи включают гибель активных центров, их дезактивацию во времени, приводящую к остановке реакции при наличии в системе мономера, а также различные типы передачи цепи, механизм которых постулируется лишь на основе аналогий и косвенных данных. В процессы передачи цепи следует включить реакции образования циклов. В связи с отсутствием новых экспериментальных данных при обсуждении механизма этих стадий трудно добавить что-либо к изложенному в уже упоминавшихся ранее обзорах. Можно лишь предположить, что в актах передачи существенную роль должны играть реакции гидридного перемещения как с участием карбониевых, так и окс-карбониевых центров. В актах гибели может оказаться важной реакция отрыва атома галоида от анионного конца цепи с образованием С—Х-связи [c.331]


    Радикальная полимеризация протекает по цепному механизму. Процесс образования молекулы полимера состоит из следующих стадий инициирование — образование первичного свободного радикала из валентнонасыщенной молекулы мономера рост цепи — последовательное присоединение к радикалу молек л мономера с сохранением свободной валентности на конце растущей молекулы обрыв цепи — прекращение роста молекулы. [c.49]

    В работах [20, 21] предложены механизмы с участием только связей М—О—С. Авторы работы [20] предполагают, что рост цепи происходит при внедрении СО с образованием промежуточного комплекса М—О—СО—R, а авторы работы [21] — при последовательном взаимодействии соседних групп М—0 = СН2. Образование связей М—О учтено в схеме на рис. 19. [c.207]

    Реакции поликонденсации, как и обычные конденсации, требуют некоторой энергии активации, поэтому они протекают лишь при нагревании. Процесс идет ступенчато, т. е. рост цепей происходит за счет последовательного присоединения молекул друг к другу. Поэтому поликонденсации протекают медленно, чем они отличаются от полимеризации, проходящей быстро по цепному механизму при низких температурах. Часто при поликонденсациях первичной реакцией является миграция атома водорода из одной молекулы в другую, как при альдольных уплотнениях, реакции Перкина и аналогичных процессах. [c.488]

    Явление сополимеризации несравненно сложнее, чем простая полимеризация. При смешении двух способных к полимеризации компонентов в присутствии какого-либо инициатора (катализатора), как уже было указано, в результате цепной реакции образуются и полимеры и сополимеры. Выяснение кинетики и механизма этих процессов является, в большинстве случаев, очень сложной задачей. При бинарной сополимеризации вместо одной реакции роста цепи имеются, по меньшей мере, четыре вместо двух возможных реакций обрыва цепи (диспропорционирование) обнаруживаются, по меньшей мере, семь различных обрывов и т. д.  [c.631]

    Полимеризация происходит путем последовательного присоединения молекул бутадиена между углеродной цепью и щелочным металлом и протекает на поверхности катализатора. По-видимому, бутадиен адсорбируется на поверхности металлического натрия, поляризуется и в поляризованном состоянии полимеризуется с образованием карбаниона. Поскольку скорость образования ди-натриевого производного намного меньше скорости роста цепи, трудно выделить низкомолекулярные промежуточные формы этих полимеров и подробно изучить состав таких промежуточных продуктов. Доказательством приведенного выше механизма процесса полимеризации служат результаты анализа пизкомолекулярных фракций полимера, в которых присутствуют атомы металла. [c.229]


    Что касается механизма сополимеризации электронодонорно-акцепторных пар мономеров, образующих КПЗ, то по этому вопросу в литературе высказаны две основные идеи. Первая ггз них заключается в том, что КПЗ выступает в роли самостоятельного мономера и его гомополимеризация ведет к образованию чередующегося сополимера. Согласно второй точке зрения процесс сополимеризации протекает с участием индивидуальных мономеров в условиях перекрестного роста цепи сополимера. [c.14]

    Механизм и кинетические закономерности анионной полимеризации часто, особенно при проведении реакции в неполярных средах, осложняются ассоциацией молекул катализатора и активных центров, ведущих рост цепи. [c.23]

    Превращение этилена в полиэтилен представляет собой цепную реакцию с участием радикалов, детальный механизм которой еще не ясен. Схематически процесс протекает в три стадии 1) инициирование — образование радикалов 2) рост цепей 3) обрыв цепей. Инициирование процесса заключается в образовании радикалов под действием катализаторов, при условии одновремен- [c.195]

    При ионной полимеризации рост цепи макромолекулы происходит под влиянием ионов. Вещества, инициирующие полимеризацию мономеров по ионному механизму, называются катализаторами, в зависимости от природы катализатора и заряда образующегося иона различают катионную и анионную полимеризацию. При цепной ионной полимеризации реакционноспособный конец растущей цепи может быть заряжен положительно (катионная полимеризация) М+ + М М +1 или отрицательно (анионная полимеризация) М + М  [c.331]

    По-видимому, рост цепи происходит за счет внедрения мономера по связи металл — углерод. При этом молекула мономера принимает определенное пространственное расположение, которое сохраняется в процессе роста цепи. На этом механизме основан промышленный синтез стереорегулярных полимеров. [c.332]

    Рост цепи происходит по только что рассмотренному механизму полимеризации со щелочными металлами  [c.44]

    Рост цепи продолжается до тех пор, пока ее свободная валентность не будет насыщена другим радикалом. В цепном механизме можно различить три этапа образование радикалов, начинающих реакцию, рост цепи, обрыв цепи. Поскольку обрывы цепей могут происходить для различных молекул в моменты, когда они достигли различной длины, то очевидно, что степень полимеризации п яв- [c.273]

    Сочетание УАА и УАГ не соответствует какой-либо определенной аминокислоте. Это так называемые бессмысленные кодоны . Однако они не вполне лишены смысла. Синтез белка останавливается, когда работа рибосомного аппарата доходит до бессмысленного кодона. Следовательно, они в какой-то степени могут регулировать длину образующихся полипептидных цепей, хотя не вполне ясно, играют ли они эту роль в ходе нормального синтеза белка. Вопрос о прекращении роста цепи РНК важен, так как от механизма, прекращающего синтез на определенном звене, зависит и функция синтезируемого белка. Имеющиеся данные говорят как будто в пользу предположения, что на молекуле м-РНК все же имеются сочетания нуклеотидов, сигнализирующие о начале и конце синтеза цепи. Процесс считывания нормального кода, т.е. синтез нормального белка, может претерпеть нарушения в результате, например, действия некоторых лекарственных веществ (стрептомицин) или под влиянием мутаций. Лекарственные вещества изменяют состояние самой рибосомы, что нарушает ход синтеза. Мутации выражаются в замене правильного триплета каким-либо иным, что приводит к росту числа ошибок при считывании генетического кода. [c.394]

    Такое инициирование полимеризации отличается от описанных ранее методов тем, что в этом случае происходит одноэлектронный перенос с молекулы мономера на вещество А или с вещества В на мономер. Вторая стадия полимеризации, инициируемой переносом электрона,— рост цепи — может протекать по ионному или радикальному механизму в зависимости от структуры мономера и свойств среды, в которой протекает полимеризация. [c.95]

    Поликонденсация. Для получения полимеров широко применяется также реакция поликонденсации. Она значительно отличается по механизму от реакции полимеризации. При полимеризации превращение мономера в полимер происходит без выделения каких-либо других химических соединений. Реакция поликонденсации состоит во взаимодействии функциональных групп мономеров и сопровождается выделением какого-либо вещества, например воды, аммиака, хлористого водорода. Реакция поликонденсации носит ступенчатый характер рост цепи происходит постепенно. Сначала реагируют друг с другом молекулы исходного вещества, затем образовавшееся соединение взаимодействует с третьей молекулой исходного вещества, с четвертой и т. д. [c.373]


    Напишите схему реакции полимеризации стирола по радикальному механизму, расчленив ее на отдельные стадии инициирование, рост цепи, обрыв цепи. [c.241]

    При взаимодействии с имеющимися в системе катионами, например с веществами, содержащими ионы водорода, рост цепи прекращается. Аналогично протекает полимеризация по катионному механизму. [c.324]

    Ионная полимеризация протекает благодаря образованию из молекулы мономера реакционноспособных ионов в присутствии катализаторов (кислоты, катализаторы Фриделя — Крафтса, щелочные металлы, амиды этих металлов, металлорганические соединения, комплексные катализаторы Циглера — Натта и др.). При ионной полимеризации катализатор регенерируется и не входит в состав полимера. Ионная полимеризация может происходить как по цепному, так и по ступенчатому механизму. В зависимости от природы катализатора различают полимеризацию катионную (рост цепи осуществляется карбкатионом) и анионную (рост цепи осуществляется карбанионом)  [c.262]

Рис. 7. Координирующий механизм полимеризации [63]. а — рост цепи б — передача цепи в — подавление или обрыв цепи. Рис. 7. Координирующий <a href="/info/102547">механизм полимеризации</a> [63]. а — <a href="/info/742">рост цепи</a> б — <a href="/info/563">передача цепи</a> в — подавление или обрыв цепи.
    Опубликованы [132] аналогичные исследования кинетики полимеризации бутадиена. Весьма вероятно, что полимеризация изопрена в присутствии катализаторов типа циглеровского протекает по анионному механизму [109, 126]. Рост цепи полимера можно представить себе как результат включения поляризованных ориентированных молекул мономера между растущей цепью и поверхностью катализатора. Сильно ненасыщенные мономеры в большей степени ориентированы и сильнее адсорбируются на поверхности катализатора, чем молекулы полимера. Обрыв цепи происходит в результате передачи гидридного иона катализатору или передачи цепи молекуле мономера. [c.199]

    Обрыв цепи происходит путем рекомбинации R с R " или с roo. Для торможения автоокислит. процессов используют ингибиторы, обычно пространственно-затрудненные фенолы или ароматич. амины. Радикалы, взаимодействуя с ингибиторами, образуют неактивные феноксильные или аминильные радикалы, к-рые не способны участвовать в стадиях роста цепи. Механизм, подобный описанному, обусловливает защитные св-ва витамина Е при действии О2 на клетки живых организмов. [c.160]

    ДО соответствующего продукта замещения — 4-фенилтиобензофе-нона (24) [реакция (21)] или он может отдать свой неспаренный электрон субстрату 20 на стадии роста цепи механизма SrnI [реакция (22)] [15]. Каталитический характер электрохимического восстановления может быть четко продемонстрирован тем фактом, что при потенциале электролиза в —1,8 В выход 24 составляет 80% при потреблении 0,2 фарадей (19,3-10 Кл) электричества на моль субстрата 20. [c.90]

    Можно ожидать, что радикал 32, так же как и другие арильные радикалы, будет продолжать рост цепи механизма SRNl, давая в конечном счете дизамещенный продукт 33 [реакция (32)]. В принципе продукт дизамещения может образовываться из 31а или 316, однако существует множество доказательств того, что монозамещенное соединение не является интермедиа-том в главном пути реакции к дпзамещенному продукту. [c.117]

    Так, по-видимому, нуклеофил путем фотоэмиссии выбрасывает электрон, который затем захватывается субстратом, в результате чего образуется первый активный интермедиат, инициирующий стадию роста цепи механизма SrnI [реакции (26) и (27)]. Сродство к электрону радикалов енолятов кетонов в газовой фазе имеет порядок 35—40 ккал/моль [39], поэтому энергии видимого света оказывается достаточно для фотоотрыва электрона пз енолят-анионов кетонов. [c.172]

    Общие положения. Стадиями обрыва цепи могут быть реакции, в которых расходуются радикальные и анион-радикальные, интермедиаты стадии роста цепи механизма SrnI. Хотя эти реакции обрыва цепи могут зависеть от условий реакции (природы растворителя, температуры, концентрации и т. д.), они обычно не зависят от характера стадии инициирования. Реакции (7) — (14) представляют собой различные возможные варианты обрыва цепи. [c.244]

    Миграция группы X к карбену обратима для Х = Н, С1 или OR даже алкил-карбеновые внедрения обратимы, особенно если карбеновые лиганды являются электрофильными и стабилизированными гетероатомом [36]. Однако известны и многостадийные процессы внедрения карбенов. Так, ненасыщенные алкильные комплексы переходных металлов промотируют полимеризацию диазометана, приводящую к полиметиленовым комплексам. В разд. 12.13,6 мы увидим, что метиленовая полимеризация на поверхности металла считается основной стадией роста цепи механизма образования линейных углеводородов из СО и Иг по Фишеру — Тропшу при катализе металлами. [c.369]

    Реакция роста цепи протекает по обычному механизму, как это было показано ранее. Ион-карбониевый механизм довольно легко объясняет о<сно1Вные закономерности реакции высокую скорость полимеризации при низких температурах, низкую энергию активации, получение полимеров с высокой молекулярной массой. Однако имеются экспериментальные данные, которые, по-видимому, трудно объяснить, исходя из этого механизма полимеризации изобутилена. [c.333]

    Следоват(льно, вне. зависимости [ т механизма прекращения роста цеп по крайнер мере на одном конц макромолекул будет находиться преимугиествеппо 1 идроксильная группа  [c.187]

    Важную роль в процессах полимеризации играют особые вещества — инициаторы полимеризации, дающие начало росту полимерной цепи. Механизм их действия связан, по-видимому, с образованием очень реакционноспособных свободных радикалов, атакующих молекулы мономеров с образованием новых, также реакционноспособных радикалов. Роль инициаторов полимеризации в процессах получения синтетических каучуков, например, играют различные неорганичесь ие и органические перекиси и соли надсерной кислоты, способные к легкому распаду на свободные радикалы [c.125]

    Радикальная полимеризация всегда протекает по цепному механизму. Функции активных промежуточных продуктов при радикальной полимеризации выполняют свободные радикалы. К числу распространенных мономеров, вступающих в радикальную полимеризацию, относятся этилен, винилхлорид, винилацетат, винил-иденхлорид, тетрафторэтилен, акрилонитрил, метакрилонитрил, метилакрилат, метилметакрилат, стирол, бутадиен, хлоропрен й другие мономеры. Радикальная полимеризация обычно включает несколько элементарных химических стадий инициирование, рост цепи, обрыв цепи и передачу цепи. Обязательными стадиями являются инициирование и рост цепи. [c.7]

    Реакция потекает по анионно-координационному механизму. Каждый акт присоединения мономера начинается со стадии образования я-комплекса двойной связи мономера (донор электронов) с переходным металлом катализатора (акцептор электронов). Благодаря наличию неспаренных я-электронов переходные элементы акцептируют электроны электронодонорных веществ, образуя комплексные соединения с высоким координационным числом (6—8). Возникновение я-комплекса приводит к ослаблению связи Ме---К, что облегчает внедрение мономера в корень растущей полимерной цепи. Такой механизм позволяет объяснить высокую избирательность катализаторов Циглера — Натта. К образованию я-комплексов Склонны мономеры с повыщенной электронной плотностью у двойной связи, т. е. мономеры, полимеризующиеся по механизму катионной полимеризации. В то же время внедрение очередного мономера по связи Ме—С характерно для реакций анионного роста цепи. [c.28]

    Реакция полимеризации состоит из трех элементарных стадий образования активного центра, роста цепи и обрыва цепи. В зависимости от природы активного центра различают радикальную полимеризацию, при которой активным цеятром является свободный радикал, а рост цепи протекает гомолитически, и ионную полимеризацию, при которой активными центрами являются ионы или поляризованные молекулы, а рост цепи протекает гетеролитически. Методы возбуждения и механизмы этих двух видов полимеризации различны. [c.9]

    Кинетический анализ катионной полимеризации приводит к следующим выводам. Общая скорость полимеризации складывается из четырех составляющих — скоростей стадий инициирования ( и), роста цепи (пр), обрыва цепи (Ообр) и передачи цепи (опвр)- Последняя имеет существенное значение в механизме катионной полимеризации и часто превышает скорость обрыва цепи по другим механизмам. Если обозначить катализатор — кислоту Н+А , а мономер М, то отдельные стадии полимеризации можно представить следующим образом  [c.39]

    Во всех цепных реакциях синтеза сополимеров из смеси двух мономеров, независимо от механизма реакции (свободнорадикальный, ионный, ионно-кординационный), растущая цепь сополимера реагирует с одним из мономеров, поэтому в системе всегда присутствуют два типа растущих цепей (как это показано в приведенных выше схемах реакций для случая радикальной сополимеризации). Следовательно, система характеризуется четырьмя константами роста цепи /г,, ki и 22- [c.59]

    Поликонденсация протекает по ступенчатому механизму. Как мы только что видели, образование полимера происходит шаг за шагом — ступенями, через стадию димера, тримера, тетрамера и т. д. Промежуточные соединения стабильны, способны вступать в реакцию, если им сообщить энергию. При поликонденсации необходимая энергия затрачивается на каждый акт роста цепи равномерно, тогда как при цепном механизме она перенимается от предыдущих актов роста цепи и в основном затрачивается на образование активных центров. Поликонденсация может быть прервана в любой стадии и затем снова возобновлена. [c.39]

    Механизм сходен с механизмом реакции Гофмана — Лёфлера (т. 4, реакция 18-44). Показанные выше стадии роста цепи прямо приводят к главным продуктам (РХ и НХ), однако в реакции возможно много других стадий роста цепи, приводящих к другим продуктам. Точно так же только одна, показанная выше стадия обрыва цепи приводит к продукту КХ, однако любые два радикала могут рекомбинировать. Таким образом, в результате могут образовываться такие продукты, как водород, высшие алканы, алкилгалогениды (имеется в виду хлорирование метана, но аналогичные процессы можно представить и для других субстратов)  [c.73]

    То, что механизм аллильного бромирования носит свободнорадикальный характер, было показано Даубеном и МакКоем [118], которые нашли, что реакция очень чувствительна к свободнорадикальным инициаторам и ингибиторам и не происходит в отсутствие хотя бы следов инициатора. В последующих работах было показано, что частицей, которая действительно отрывает водород от субстрата, является атом брома [119]. Реакция инициируется малыми количествами радикала Вг как только он образуется, главные стадии роста цепи имеют вид  [c.76]

    Хлоросульфирование органических молекул хромом и диоксидом серы носит название реакции Рида [217]. По своей области применения и характеру образующихся продуктов реакция аналогична реакции 14-1. Механизмы этих двух реакций также сходны, за исключением того, что в реакции Рида имеются еще дпе главные стадии роста цепи  [c.91]

    Особенностью такой полимеризации является бифункциональное присоединение мономера, в то время как при анионной полимеризации, катализируемой амидами металлов, бифункциональный мономер присоединяется по одной функции. В реакции роста цепи при полимеризации, катализируемой металлоорганическими соединениями, участвуют два центра катализатора — металл и алкил (двухцентровой механизм по./ нмеризации). [c.86]

    Здесь также мономер присоединяется двумя своими функциями, и при этом его молекула принимает определенное пространственное положение, которое сохраняется в процессе роста цепи. Благодаря этому получаются стереорегулярлые полимеры. Дальнейший рост цепи осуществляется по аналогичному механизму  [c.90]

    Рост цепи протекает по катионному механизму за счет взаимодействия двиттер-иона с молекулой мономера  [c.315]

    Оптимизация процесса проведена на основе различных вариантов кинетических схем процесса. В первой схеме кроме основных стадий процесса полимеризации инициирования, роста цепи, передачи цепи на мономер, полимер, обрыва цепи, - включена стадия спонтанной передачи цепи. Другая кинетическая схема описывает механизм реакции передачи цепи на полимер под действием миграции двойных связей. Истинный механизм процесса устанавливается путем сопоставления экспериментальных данных с результатами расчетов по предлагаемым кинетическим схемам процесса. В результате математическое моделирование процесса синтеза СКДК в промышленных условиях позволило  [c.60]


Смотреть страницы где упоминается термин Рост цепи механизм: [c.205]    [c.627]    [c.107]    [c.88]    [c.251]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) -- [ c.54 , c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Рост цепи



© 2025 chem21.info Реклама на сайте