Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рений с бором

    В бориде рения определяют рений, бор и углерод. [c.189]

    В настоящее время промышленность редких металлов включает производство лития, рубидия, цезия, бериллия, стронция, циркония, гафния, ниобия, тантала, рения, бора, галлия, индия, германия. Освоено раздельное получение редкоземельных металлов лантана, церия, празеодима, неодима, прометия, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция, скандия, иттрия. [c.186]


    Как показал В. Г. Петров, модифицирование горячих цинковых покрытий рением (0,01%), церием (0,1%), теллуром (0,001%) или бором (0,001%) повышает защитные свойства покрытии в 1,7—2,0 раза и устраняет нежелательное изменение полярности цинкового покрытия по отношению к железу при повышенных температурах в связи с их меньшей электрохимической гетерогенностью (пониженное содержание фаз, обогащенных железом, и значительная протяженность ri-фазы с измельченной структурой). [c.357]

    Какое вещество называется карбораном-10 (ба-реном) Как его получают Сколько атомов углерода и бора он содержит Какая связь характерна для этого соединения  [c.109]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Из неметаллических элементов наиболее тугоплавки углерод и бор, т. е. элементы П1—IV групп с ковалентной связью. К сожалению, не все перечисленные элементы сохраняют достаточный уровень свойств при высоких температурах. Причина тому — состав окружающей среды. Так, например, алмаз, имеющий самую высокую температуру плавления (4200° С) из всех существующих на земле элементов, при отсутствии защитной атмосферы сгорает при 850—1000° С, а в атмосфере кислорода — при 700—850° С. Пленка окисла на молибдене появляется при 250° С, а при температурах выше 700° С окисел начинает так быстро испаряться, что кусок молибдена буквально тает на глазах. Например, молибденовый стержень диаметром 13 мм при 1100° С через 6 ч будет полностью уничтожен . Среди окислов тугоплавких металлов самую меньшую температуру плавления имеет окисел рения. Он плавится при 300° С и кипит при несколько большей температуре. Кроме безвозвратных потерь (окалина и продукты сгорания или испарения), при длительном воздействии высоких температур происходит своего рода химико-термическая обработка поверхностных слоев, газонасыщение с образованием хрупких соединений. [c.215]

    Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий). [c.39]


    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]

    Будут учтены успехи гальванотехники последних лет новые сплавы, например металлов группы железа с вольфрамом, молибденом, рением, марганцем, фосфором, бором, кремнием  [c.280]

    Элементы марганец Мп и рений Ке, а также искусственно полученные радиоактивные элементы с порядковыми номерами 43 и 107 (технеций Тс и борий ВЬ) составляют УПБ-группу Периодической системы Д.И. Менделеева. Технеций был первым элементом, полученным в результате ядерного синтеза он также накапливается в радиоактивных отходах ядерной энергетики. [c.225]

    Порошкообразный рений при достаточно сильном нагревании реагирует с кремнием, фосфором, углеродом, бором и другими элементами при этом образуются соответственно силициды, фосфиды, бориды, арсениды, карбиды [425, 850, 1119, 1339]. [c.29]

    Недостатками радиоактивационных методов являются значительные сложности определения рения в объектах с высокими значениями сечений захвата нейтронов (бор, кадмий, некоторые РЗЭ) и необходимость использования сложного и дорогого электронного оборудования. Кроме того, точность определения рения этим методом не превышает 20—30%. [c.171]

    Недавно Захаркиным и сотр. [506] было синтезировано карборановое производное карбонила рения со связью рений — бор (XXII) по реакции  [c.42]

    На рис. 20 изображена схема одного из возмож ных вариантов сборки вакуулмной системы, содержа щей в основной линии один трехходовой кран. Кран имеет четыре рабочих положения, что позволяет в процессе работы соединять манометр с вакуумным прибором при отключенном насосе (для проверки герметичности прибора) (рис. 21,а) соединять мано метр с насосом при отключенном приборе (для изме рения максимального разрежения, даваемого насосом) (рис. 21,6) соединять прибор с насосом при отключенном манометре (если нет необходимости в измерении вакуума) (рис. 21, в) соединять вместе при-бор, насос и манометр (основное рабочее положение) (рис. 21,г). Иногда вместо трехходового крана устанавливают стеклянный тройник, а отключение частей вакуумной линии осуществляют с помощью зажимов, из которых наиболее удобны хирургические (рис.22). На линии манометра имеется кран для впуска воздуха. Следует твердо придерживаться правила в конце работы вначале впускают воздух в систему и лишь затем отключают насос. Поступать наоборот нельзя выключение насоса без предварительного впуска воздуха может в случае неисправности обратного клапана вызвать переброс масла в систему. Непосредственно у насоса рекомендуется устанавливать предохранительный стеклянный шар вместимостью 1 — 1,5 л, задерживающий масло при случайном перебросе. [c.45]

    Электронные аналоги. Рассмотрение размещения электронов по уровням и подуровням оболочек атомов, выражаемого электронными формулами, показывает нам, что независимо от числа энергетических уровней размещение электронов по подуровням в наружных уровнях может быть аналогичным. Эта аналогия выражается одинаковыми электронными формулами наружных уровней. Так, например, размещение электронов на наружных уровнях атомов бора, алюминия, галлия, индия и таллия выражается соответственно электронными формулами 2s 2p 35 3p 4s 4p 5s 5,o и б5 6р а в атомах фтора, хлора, брома, иода и астата — формулами 25 2р 35ЧрЧзЧр" 58 5р и б5 6р Элементы, в атомах которых одинакова электронная конфигурация наружного уровня, называются электронными аналогами. У атомов ряда элементов понятие электронной аналогии распространяется и на преднаружный уровень. Так, например, электронная конфигурация атомов титана, циркония и гафния выражается формулами 4з 4р 4с1 5з и а атомов марганца, технеция и рения — 45 Чр 4 552 5s 5p 5d" 6s . Таким образом, электронные аналоги отличаются друг от друга числом энергетических уровней и сходны но конфигурации наружных уровней. [c.32]

    Марганец и репий хорошо растворяют водород, по-виднмому, без химического взаимодействия с ним. Растворимость водорода в марганце возрастает с повышени.ем температуры. С углеродом марганец взаимодействует в расплавленном состоянии с образованием карбидов, чаще всего МпзС. Рений также образует с углеродом карбиды, которые изучены еще недостаточно. Марганец и ре-нн 1 взаимодействуют также с бором и кремнием. [c.291]


    В состав этой подгруппы — подгрз ппы марганца, входят элементы марганец, искусственно полученный технеций, рений и искусственно полученный борий. Отношение между ними и элементами главной подгруппы седьмой группы — галогенами — приблизительно такое же, как и между элементами главной и побочной подгрупп шестой группы. Имея на внешней электронной оболочке атома всего два электрона, марганец и его аналоги не способны присоединять электроны и, в отличие от галогенов, соединений с водородом не образуют. Однако высшие кислородные соединения этих элементов до некоторой степени сходны с соответствующими соединениями галогенов, так как в образовании связей с кислородом у них, как и у галогенов, могут участвовать семь электронов. Поэтому их высшая степень окисления равна - -1. [c.518]

    С серой марганец образует сульфид MnS, а рений — сульфиды ReSa и RejS,. С азотом, углеродом, кремнием и бором марганец и рений образуют нитриды, карбиды, силиды и бориды различного состава некоторые из них обладают металлической электропроводностью. [c.249]

    Марганец и рений при высоких температурах соединяются с кремнием и бором. Образующиеся силиды и бориды имеют разнообразный состав. [c.117]

    Рений также образует соединения с кремнием и, по-видимому, с бором. Силиды рения и марганца обладают металлической проводимостью. Некоторые свойства силидов и боридов приведены в табл. 28. [c.122]

    К 1940 г. сложилось на этот счет две точки зрения. Согласно одной из них 93 элемент, ближайший к урану, должен быть аналогом рения (см. табл. 90) и его предварительно называли экарением, Последуюш,ие три элемента 94, 95 и 96 должны быть аналогами платиновых металлов VIII группы осмия, иридия и платины. Другая точка зрения была высказана Бором и Гольдшмидтом согласно ей в VII периоде, по аналогии с лантаноидами, существует особое семейство элементов, для которого были предложены названия актиноиды, актиниды, ториды, протактиниды и ураниды. [c.286]

    Используя различные методы определения атомных масс элементов, Я. Берцелиус в 1826 г. дал повую систему атомных масс (см. стр. 152). В этой таблице атомные массы большинства металлов оказались очень близкими к современным соответствующие оксиды лшогих из них получили правильную формулу, Вместо прежних формул РеОг, РеОз, СиО и СиОг оп принял формулы FeO, ГегОз, СпгО, СиО, СаО, ВаО, АЬОз, МнгОз, СггОа и др. Однако атомные массы щелочных металлов были установлены неточно, так как для их оксидов Я. Берцелиус принимал такой состав NaO, КО и т. д. В 1841 г. В. Реньо внес коррективы в эти формулы, после чего в системе атомных масс Я. Берцелиуса почти не было принципиальных ошибок. Из 54 элементов, известных к концу жизни шведского химика, неправильными оказались атомные массы серебра, бора, бериллия, кремния, ванадия, циркония, урана, церия, иттрия и тория многие из них были исправлены лишь в результате открытия периодического закона Д. И. Менделеева. [c.136]

    Учение об эквивалентах Волластона нооншданно в 1833— 1833 гг. получило поддержку со стороны физиков — в этн годы М. Фарадей экспериментально установил электрохимические эквиваленты. В 1840-е годы В, Реньо обнаружил отступления от закона тенлоемкосте " Дюлонга и Пти. Три элемента (углерод, бор и кремний) представляли исключения из закона. Все это подрывало доверие к тем физическим законам, которыми руководствовался Я. Берцелиус прп определении атомных масс. Так возникли те объ- [c.178]

    Применение разнолигандных комплексов во многих случаях приводит к повышению селективности, контрастности реакций, улучшению экстракционных и других свойств. Приведем несколько примеров. Определение малых количеств тантала в присутствии больших количеств ниобия — очень трудная задача. Однако эта задача была успешно решена с применением экстракционно-фотометрического метода определения тантала в виде ионных ассоцнатов гекса фторид ноге комплекса тантала с основными красителями. Аналогичную трудность испытывали аналитики при определении малых количеств рения в присутствии больших количеств молибдена. Только применение экстракции с трифенилметановыми красителями дало возможность определять очень малые количества рения в молибдене или молибденовых рудах с довольно низким пределом обнаружения. Это же относится к определению осмия в присутствии других платиновых металлов, определению бора и других элементов. Введение второго реагента часто приводит к улучшению экстракционных свойств комплексов и снижению предела обнаружения. Так, дитизонат никеля очень плохо экстрагируется неводными растворителями. Для полной его экстракции тетрахлоридом углерода требуется примерно 24 ч. Если же ввести третий компонент — 1,10-фенантролин или 2,2 -дипиридил, то комплекс экстрагируется очень быстро, а предел обнаружения никеля снижается в пять раз. [c.299]

    Для учучшення антифрикционных характеристик и предотвраще НИЯ схватывания серебряных электрических контактов или подшипников СКОЛЬЖЕНИЯ применяют КЭП, содержащие и качестве пторой фазы гра фит, дисуаьфид молибдена, иитрид бора ичи оксиды рения. [c.194]


Смотреть страницы где упоминается термин Рений с бором: [c.4]    [c.295]    [c.386]    [c.43]    [c.98]    [c.384]    [c.480]    [c.139]    [c.620]    [c.289]    [c.479]    [c.479]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Реней

Рений

Рениты

Ренне

Реньо



© 2024 chem21.info Реклама на сайте