Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкозамин, образование

    Гепарин — полисахарид, содержащийся в различных животных тканях, обладает специфическим свойством увеличивать время свертывания крови. Он применяется в медицине для предотвращения образования сгустков крови (тромбоз) после некоторых видов хирургических операций. Полисахарид состоит из эквимолекулярных количеств Д-глюкуроновой кислоты и )-глюкозамина, аминогруппа которого связана с остатком серной кислоты. Одна гидроксильная группа в структурной единице С12 также этерифицирована серной кислотой. Строение гепарина продолжает изучаться. [c.577]


    Для определения аминосахаров обычно применяются колориметрические методы, предложенные Морганом и Эльсоном. Существуют два таких метода метод Моргана — Эльсона известный также под названием непрямого метоДа Эрлиха, и метод Эльсона—Моргана . Метод Моргана — Эльсона пригоден для определения микроколичеств N-ацетиль-ных производных аминосахаров (20—50 мкг). Он состоит в непродолжительном нагревании N-ацетилгексозамина с раствором соды при pH 10,8 с последующей обработкой солянокислым раствором /г-диметиламинобенз-альдегида (реактив Эрлиха), что приводит к образованию хромогена, содержащего фурановое кольцо (см. стр. 274), и к возникновению интенсивной красной окраски. Оптическую плотность окрашенного раствора определяют при 550 ммк. Присутствие в анализируемом субстрате лизина и обычных моносахаридов искажает результаты анализа, так как возникающие хромогены дают с реактивом Эрлиха окрашивание с максимальной оптической плотностью при 560 ммк Все гексозамины D-ряда образуют, по-видимому, один й тот же хромоген, поскольку при этом разрушаются все асимметрические центры, кроме С5. Однако интенсивность окраски в случае М-ацетил-О-галактозамина в четыре раза слабее интенсивности окраски М-ацетил-О-глюкозамина [c.280]

    Хитин нерастворим в воде, органических растворителях, реактиве Швейцера и весьма стоек к щелочам. При кислотном гидролизе он расщепляется с образованием глюкозамина. Фермент хитаза разлагает хитин и образует Л -ацетилглюкозамин. Сравнительная устойчивость хитина делает перспективной модифицирование его для получения защитных реагентов. С этой целью Р. Джонсоном были предложены водорастворимые эфиры хитина — аналоги соответствующих эфиров целлюлозы хитинсульфат, карбоксиметилхитин, карбоксиэтилхитин. Испытания этих продуктов при стабилизации соленых буровых растворов оказались обнадеживающими. Тем не менее, оценивая реагенты, полученные из структурных углеводов типа пектина, лихенина или хитина, необходимо отметить, что все они, как правило, не имеют преимуществ перед реагентами на основе эфиров целлюлозы или крахмала и по эффективности значительно им уступают. [c.188]

    Образование В-глюкозамин-6-фосфата происходит при взаимодействии фруктозо-6-фосфата с глутамином [уравнение (12-4)]. [c.526]

    Примером гетерополисахаридов является гиалуроновая кислота, которая очень важна для высших организмов. Она входит в состав соединительной ткани в качестве основного компонента, заполняет межклеточное пространство тканей в комплексе с белками. Гиалуроновая кислота входит также в состав синовиальной жидкости - вязкого материала, окружающего суставы, который служит и смазкой и амортизатором. Стекловидное тело глаза также богато гиалуроновой кислотой. Поскольку водные растворы этого полисахарида гелеобразны, то гиалуроновую кислоту, как и другие подобные вещества, относят к мукополисахаридам. Гиалуроновая кислота представляет собой линейный полимер, образованный повторяющимися ди-сахаридными звеньями, состоящими из Р-О-глюкуроновой кислоты и Ы-ацетил-О-глюкозамина, соединенными Р-(1->3)-связью, а эти дисахарид-ные звенья соединены Р-( 1- 4)-связью (рис. 29). [c.70]


    При кислотном гидролизе хитин расщеггияется с образованием глюкозамина (см. стр. 674) действие фермента хитазы приводит к образованию Ы-ацетил-глюкозамина. [c.723]

    Прочные нерастворимые панцири, или экзоскелеты, омаров, крабов, а также многих насекомых построены в основном из полисахарида хитина-линейного полимера, образованного остатками М-ацетил-О-глюкозамина, которые соединяются друг с другом Р-связями [c.316]

    Участие структурных единиц лигнина в гумусовых образованиях почв, торфов и углей зависит от очень многих факторов, прежде всего — от химического состава исходных организмов, условий биохимической стадии распада, геологической обстановки. В связи с этим В. А. Успенский и О. А. Радченко (1955) предложили построить классификацию генетических типов гуминовых кислот. Вполне вероятно, что в природных условиях имеется возможность образования гуминовых кислот с участием и без участия лигнина. Авторы перечисляют ряд вариантов процесса гумификации, когда присутствует углеводно-белковый материал, а участие лигнина полностью исключено. Это — гумифршация водорослей, грибов или бактерий, развивающихся на материале, не содержащем лигнина, гумификация остатков животного материала. Успенский и Радченко называют такие гуминовые кислоты чисто меланоидиновыми в отличие от лигниновых гуминовых кислот. Авторы отмечают также, что особый тип меланоидинов возникает при гумификации хитина и продукта его гидролиза глюкозамина. Образование меланоидинов из хитина и глюкозамина было нами экспериментально показано в 1954 г. (Манская, Дроздова, Тобелко), далее эта реакция была подробно изучена Т. В. Дроздовой (19576, 19596). [c.122]

    Исследование процессов гидролиза ХГК, протекающих в кислых средах, позволило установить некоторые закономерности гидролиза, присущие ХГК. Так, путем гидролиза хитин-глюканового и хитозан-глюканового комплексов в концентрированной соляной и 55%-ой серной кислотах показано, что деградация этих полимеров приводит к вьщелению аммиака и образованию Д-глюкозамина, глюкозы, фруктозы, уксусной кислоты, а также обнаружено присутствие водорастворимых хитоолигосахари-дов и аминокислотных фрагментов. Изучение гидролиза ХГК в разбавленной соляной кислоте методом ПМР спектроскопии показало, что частичный гидролиз ХГК в мягких [c.162]

    Блике (1956) предположил, что нейраминовая киелота является продуктом альдольной конденсации гексозамина с пировиноградной кислотой. Действительно, расщепление N-ацетилнейраминовой кислоты, протекающее под действием ацетата никеля в пиридине, приводит к образованию наряду с другими продуктами 2-ацетамидо-2-дезокси-Л-глюкозы. На основании этих данных для N-ацетилнейраминовой кислоты первоначально было предложено строение продукта альдольной конденсации пировиноградной кислоты и Ы-ацетил-/)-глюкозамина. [c.637]

    При образовании полисахаридов в клетках млекопитающих из фруктозы образуется фруктозо-6-фосфат, затем глюкозамин-6-фосфат и в конечном итоге — К -ацетилман-нозамин, иОР-Ы-ацетилглюкозамин, иОР-Ы-ацетилгалак-тозамин. Производные моносахаридов активно участвуют в метаболизме живой клетки, стимулируя процессы фотосинтеза, обеспечения клетки энергией, детоксикации и вывода ядовитых веществ, биосинтеза ароматических соединений, в том числе и аминокислот тирозина и фенилаланина, образования сложных биополимеров (полисахаридов, гликопротеинов, гликолипидов, нуклеиновых кислот). [c.127]

    Аминосахара проявляют также обычные свойства моносахаридов-и образуют многие производные, характерные для гидроксильной и альдегидной групп сахаров. При реакции с фенилгидразином аминосахара. легко образуют фенилозазоны, и, если аминогруппа находится у С , образование фенилозазона сопровождается ее элиминированием. Подобнообычным моносахаридам, аминосахара легко подвергаются перегруппировке Лобри де Брюина и Альберда ван Экенштейна. Однако аминосахара с незащищенной аминогруппой нестойки, поэтому эпимеризацию-удобнее проводить, используя их N-aцeтильныe производные. Индукционный эффект ацетамидогруппы способствует енолизации альдегидной группы, что является необходимым условием процесса эпимеризации (см. гл. 3). Эта реакция была положена в основу одного из методов получения труднодоступного Д-маннозамина из Н-ацетил-Д-глюкозамина . [c.271]

    Подкласс Т. составляют ацилтрансферазы, катализирующие перенос ацильной группы с образованием эфиров и амидов. Донором в этих р-циях обычно является ацилкофер-мент А (см. Пантотеновая кислота). Р-ции, катализируемые этими Т., наиб, характерны для метаболизма жирных к-т. Акцепторами ацетила (донор ацетилкофермент А) м. б. аминокислоты, глюкозамин, остаток фосфорной к-ты и др. [c.625]

    Этот вопрос представлялся наиболее трудным, так как прямая замена аминогруппы на гидроксил (например, при обработке азотистой кислотой) может идти как с обращением, так И с сохранением конфигурации 1и сопровождаться образованием ангидросахара Так, например, бензилиденовое производное глюкозамина дает при такой замене производное манновы напротив, упомянутый выше метилгликозид N, N-диме-тилглюкозамина (III) при обработке едким баритом дает производное глюкозы. Вследствие этого для доказательства конфигурации у С(2 можно использовать только прием, который не связан с какой-либо обменной реакпией у этого атома [c.126]


    Реакцию можно проводить в водной среде без катализаторов. Бергману и Штерну [18] удалось ацетилировать кетеном многие аминокислоты в водной среде. Такие кислоты можно ацетилировать в виде их натриевых солей в водном растворе с высокими выходами. Аминоуксусная кислота и лейцин легко ацетилируются даже в отсутствие щелочи /-тирозин в этих условиях превращается в О, Ы-диацетильное производное. Аминоспирты [205] и аминофенолы [19] ацетилируются кетеном с образованием только Ы-ацетильных производных. Так, серии и глюкозамин [19] при действии кетена превращаются в Ы-ацетильные производные. Инсулин [236] и другие белки, содержащие амино- и оксигруппы, можно ацетилировать ступенчато, причем при действии кетена обычно происходит только Ы-ацетилирование. Впрочей, некоторые сомнения вызывает [171] то, что Ы-ацетилирование не сопровождается атакой оксигруппы в тирозине. [c.208]

    Дезоксирибонуклеазы II вызывают деполимеризацию молекулы ДНК в результате парных разрывов фосфодиэфирных связей обеих цепей ДНК с образованием более крупных олигодезоксирибонуклеотидов. Представителем их является ДНКаза II, вьщеленная из селезенки, имеющая мол. массу 38000 и состоящая из 343 аминокислотных остатков. В составе этой ДНКазы открыт глюкозамин. Фермент также активируется ионами металлов, ингибируется анионами его оптимум pH между 5,5 и 5,8. [c.499]

    В тейхоевых кислотах доказано наличие сложноэфирной связи (тип А) аланина с остатками рибита. В защитном антигене стафилококка обнаружена амидная связь остатков аланина через аминогруппу глюкозамина . Высказано предположение о наличии в гликопротеинах 0-ацилгликозид-ной связи, однако твердые доказательства существования такого типа связи еще отсутст вуют. Очевидно, в сложных по структуре гликопротеинах углеводные и пептидные части могут быть связаны и несколькими разными типами связей, о чем свидетельствует неполное расщепление всех гликопептидных связей под действием какого-либо одного реагента и образование смеси низкомолекулярных гликопептидов, содержащих связи разного типа при неспецифической деструкции исходного гликопротеина. [c.573]

    Дигидроксибензойная кислота — важнейший метаболит насекомых. Наружный покров этих животных состоит из хитина — полимера N-ацетил-глюкозамина. Под ним размещается внешний скелет, служащий местом прикрепления мышц. Он построен из полипептидных цепей, сшитых между собой ароматическими мостиками. Именно 3,4-дигидроксибензойная кислота принимает участие в образовании этих сшивок. [c.295]

    Гиалуроновая кислота была выделена из стекловидного тела глаза, синовиальной жидкости (жидкость в полости суставов), из гемолитического стрептококка и т. д. Она имеет молекулярный вес порядка Ю . При кислотном гидролизе этой кислоты получаются эквимолекулярные количества глюкозамина, глюкуроновой кислоты и уксусной кислоты. Ферментом гиалуронидазой он гидролизуется с образованием глюкуроновой кислоты и Ы-ацетилглюкозамина. Исследования последних лет показали, что молекула гиалуроновой кислоты состоит из чередующихся остатков глюкуроновой кислоты и К-аце-тилглюкозамина, соединенных связями [3-1,3 эти фрагменты соединены связями Р-1,4  [c.727]

    Еще один важный гликозаминогли-кая-гепарин] он образуется лишь в определенных клетках, присутствующих главным образом в выстилающем слое стенок артерий. В состав гепарина входят повторяющиеся единицы из остатков шести сахаров, каждая из которых представляет собой последовательность чередующихся остатков сульфопроизводных К-ацетил-В-глюкозамина и В-идурона-та. Гепарин - мощный ингибитор свертывания крови он предотвращает образование тромбов в циркулирующей крови. Вьщеленный из легочной ткани гепарин используется в медицине для предотвращения свертывания донорской крови, а также для предупреждения свертывания крови в сосудах при различных патологических состояниях, например после приступов стенокардии. [c.321]


Смотреть страницы где упоминается термин Глюкозамин, образование: [c.256]    [c.74]    [c.197]    [c.349]    [c.719]    [c.720]    [c.247]    [c.147]    [c.468]    [c.278]    [c.112]    [c.527]    [c.317]    [c.179]    [c.184]    [c.353]    [c.121]    [c.270]    [c.272]    [c.282]    [c.577]    [c.317]    [c.350]    [c.188]    [c.199]    [c.322]    [c.682]    [c.427]    [c.239]    [c.318]   
Основы биологической химии (1970) -- [ c.261 , c.308 ]




ПОИСК







© 2025 chem21.info Реклама на сайте