Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДНК фосфодиэфирная цепь

    Эти части соединяются друг с другом с высвобождением двух молекул воды (рис. 2-20). Нуклеотиды связаны фосфодиэфирными связями, образующимися между 5 -гидроксилом сахара одного нуклеотида и З -гидроксилом другого [уравнение (2-11)]. Структура пары коротких полинуклеотидных цепей изображена на рис. 2-21. [c.123]

    Конечно, по мере того как новые основания сближаются с матричной цепью, они должны вступать в реакцию полимеризации, давая комплементарную цепь. Для этого две мономерные единицы образуют между собой 3, 5 -фосфодиэфирную связь. Ферментом, который катализирует такую реакцию полимеризации, является ДНК-полимераза. Как и в случае образования пептидной связи, для образования фосфодиэфирной связи затрачивается определенная энергия. Следовательно, мономерные единицы нельзя последовательно присоединять в форме монофосфатов, но следует сначала активировать, превратив в трифосфаты. Для обеспечения правильной последовательной полимеризации ферменту необходимо присутствие родительской цепи в качестве матрицы. Помимо этого для фермента необходимо присутствие затравки ДНК, с которой начинается синтез новой цепи. Следовательно, имеет место не синтез совершенно новой цепи, а удли- [c.148]


    Энергия, затрачиваемая на образование каждой новой фосфодиэфирной связи в цепи ДНК, обеспечивается расщеплением фосфатной связи между а- и р-фосфатными группами нуклеозидтрифосфата. [c.252]

    Стратегические проблемы синтеза полипептидов и полинуклеотидов носят существенно иной характер. Здесь также требуется последовательное построение необходимых межмономерных связей и, следовательно, применение эффективных и общих методов создания амидной и фосфодиэфирной связей соответственно. Однако в отличие от типичных полисахаридов эти биополимеры состоят из линейных, но нерегулярных последовательностей не идентичных мономерных звеньев. Именно эта специфическая последовательность определяет уника,тьные химические, физические и биохимические свойства каждого из этих биополимеров. Таким образом, стратегической проблемой в синтезе этих соединений является обеспечение строго определенной последовательности мономерных звеньев в растущей полнпептидной или полинуклеотидной цепи, тогда как задача построения самих межмономерных связей низводится на тактический, рутинный уровень. Очевидно, что для построения таких нерегулярных полимерных цепей реакции типа полимеризации или поликонденсации принципиально неприменимы (в противоположность синтезу регулярных полисахаридов), а присоединение к растущей цепи каждого очередного мономерного звена превращается в самостоятельную операцию, требующую собственного набора реагентов и условий ее проведе- [c.298]

    ПОЛИНУКЛЕОТИДЫ ПЕРВИЧНАЯ СТРУКТУРА (ФОСФОДИЭФИРНАЯ ЦЕПЬ) [c.127]

    ДНК-полимеразы проверяют комплементарность каждого нуклеотида матрице дважды один раз перед включением его в состав растущей цепи и второй раз перед тем, как включить следующий нуклеотид. Очередная фосфодиэфирная связь образуется лишь в том случае, если последний (З -концевой) нуклеотид затравки комплементарен матрице. Если же на предыдущей стадии полимеризации произошла ошибка (например, из-за того, что нуклеотид в момент полимеризации находился в необычной таутомерной форме), то репликация останавливается до тех пор, пока неправильный нуклеотид не будет удален. Некоторые ДНК-полимеразы обладают не только полимеризующей, но и 3 -экзонуклеазной активностью, "Которая отщепляет не спаренный с матрицей нуклеотид затравки. После чего полимеризация восстанавливается, от механизм, коррекция, заметно увеличивает точность работы ДНК-полимераз. Мутации, нарушающие З -экзонуклеазную активность ДНК-полимеразы, существенно повышают частоту возникновения прочих мутаций. Напротив, мутации, приводящие к усилению экзонуклеазной актив- ности относительно полимеризующей, снижают темп мутирования Генетического материала. [c.47]

    Структуры смешанных биополимеров чрезвычайно сложны, а их подробное изучение в сущности лишь только начинается. В отличие от полисахаридов систематически описать и классифицировать типы структур смешанных биополимеров весьма затруднительно прежде всего из-за ограниченного количества надежно и полно расшифрованных структур. Укажем лишь, что связь олиго-или полисахаридной компоненты с пептидной, белковой или липидной осуществляется обычно при помощи гликозидной связи либо по гидроксильным группам (например, в остатках оксиаминокислот пептидной цепи), либо по амидной группе амидов двухосновных аминокислот. Возможна также фосфодиэфирная связь, подобная той, которая лежит в основе строения нуклеиновых кислот. [c.44]


    Еще одна интересная особенность структуры тРНК состоит в наличии нескольких резких изгибов фосфодиэфирной цепи. Как будет показано в гл. 6, остов нуклеиновой кис- [c.179]

    В нуклеиновых кислотах мономерные остатки связаны между собой фосфодиэфирными связями,. Как в ДНК, так и в РНК эта связь осуществляется только за счет З -ОН одного нуклеозндного сстат-ка и 5 -0Н другого (рис. 3). Поэтому межнуклеотидную связь называют 3 —5 -фосфодиэфирной. Отсюда следует, что лолинуклеотидные цепи ДНК л РНК полярны и их концевые остатки неравноценны если рассматривать нефосфорилированный по концам полинуклеотид, то на одном конце он будет содержать 5 -, а на другом конце — З -ОН. Эти концы называют 5 - и З -концами цепи, соответственно. [c.11]

    З -Гидроксил затравки атакуется а-гтомом фосфора соответствующего (определяемого затравкой) трифосфата, отщепляя при этом пирофосфат и образуя фосфодиэфирную связь. З -Гид-роксильная группа вновь присоединенного мономера находится теперь в положении, позволяющем атаковать следующую молекулу трифосфата, так что полимеризация может продолжаться вдоль матрицы. Матрица оканчивается 5 -фосфатом, а новообразованная цепь — З -гидроксильной группой. [c.150]

    Синтез 3, 5 -фосфодиэфирной связи в РНК осуществляется так же, как и в ДНК. Опять З -гидроксильная группа растущей цепи (РНК) атакует соответствующий мономерный трифосфат, как диктуется матрицей, образуя фосфодиэфирную связь с последующим отщеплением пирофосфата. Эта реакция катализируется ферментом РНК-иолимеразой. В данном случае матрица — это ДНК, так как генетическая информация, хранящаяся в форме ДНК, передается полимерной РНК (так называемой мРНК). В качестве матрицы служит лишь одна из двух цепей ДНК. Однако для начала синтеза не требуется затравки РНК- Фермент просто связывается с определенным участком цепи ДНК, и отсюда начинается синтез РНК этот участок называется промотором. Происходящую прн этом реакцию можно представить следую- [c.152]

    Идентификация модифицированных нуклеотидных остатков в полинуклеотидной цепи РНК долгое время была задачей особой трудности. С появлением современных методов секвенирования нуклеиновых кислот она существенно упростилась. Модификацию РНК или ее расщепление ферментами ведут таким образом, чтобы (как и при секвенировании) было затронуто в среднем только одно звено на молекулу (в чем есть дополнительный смысл, так как множественная модификация РНК искажает ее структуру). Далее, если изучается РНК небольшого размера или сегмент РНК, примыкающий к одному из ее концов, то этот конец метят радиоактивной меткой и задача идентификации модифицированного основания (после расщепления соответствующего звена) или атакованной нуклеазой межнуклеотидной связи сводится, как и при секвенировании, к определению длины фрагмента по его подвижности в высокоразрешающем электрофорезе в геле. В том случае, когда анализируемый район удален от концов молекулы на расстояние больше 150—200 н. о., используют реакцию обратной транскрипции (см. гл. 13). Для этого синтезируют олигонуклеотид, комплементарный участку РНК, расположенному вблизи от анализируемого района с З -концевой стороны молекулы, и далее используют его как праймер для обратной траискриптазы. Так как этот фермент останавливается на модифицйрованных остатках матрицы (или в том месте, где расщеплена фосфодиэфирная связь), то вновь по длине образующегося фрагмента можно определить положение модифицированного звена в РНК. [c.40]

    После завершения реакции защитные группы можно удалить в мягких условиях, не затрагивающих фосфодиэфирной связи. На этом основан фосфодиэфирный метод синтеза полинуклеотидов. Продукт реакции — фосфодиэфир со свободной, потенциально уязвимой для воздействия, отрицательно заряженной группой. Далее, с увеличением длины полинуклеотидной цепи число отрицательных зарядов в соединении также будет увеличиваться. Поэтому в зависимости от условий реакции эти потенциально нуклеофильные центры могут участвовать в нежелательных побочных реакциях. Кроме того, такое многозарядное соединение слищком полярно, чтобы можно было проводить его очистку обычными методами органической химии, например с помощью хроматографии на силикагеле. Вместо этого необходимо использовать хроматографию на ионообменных носителях, обладающих меньшей емкостью (например, на ДЭАЭ-целлюлозе). Фосфодиэфирный метод пригоден для получения веществ лишь в небольших количествах. Однако нейтрализация зарядов путем этерифи-кации подходящими защитными группами перед фосфорилирова-нием нуклеозидов устраняет проблемы, упомянутые выше. В этом случае продуктом реакции конденсации является фосфотриэфир. Фосфотриэфирный метод позволяет работать с большими количествами веществ. Ниже описаны некоторые защитные группы, используемые для блокирования фосфата. [c.167]

    Из рис. 8 видно, что углеводофосфатный остов молекулы обращен наружу. Спираль закручена таки.м образо.м, что на ее поверхности можно выделить две бороздки большую шириной 2,20 нм и малую шириной около 1,20 н.м (их называют также главным и минорным желобками). Спираль — правозакрученная, а полннук-леотидные цепи в ней антипараллельны. Это означает, что, если двигаться вдоль оси спирали от одного ее конца к другому, в одной цепи будут встречаться фосфодиэфирные связи в направлении 3 - -5, а в другой — в направлении 5 ->-3. Иными словами, на каждом из концов линейной молекулы ДНК расположены 5 -конец одной и З -конец другой цепи. [c.22]


    При другом способе терминальной инициации роль затравкн выполняет белок, точнее — ковалентное соединение белка с нуклеотидом. Такое соединение возникает в результате образования фосфодиэфирной связи между 5 -гидроксилом дезоксирибонуклео-тида (например, ёСМР) и гидроксилом оксиамииокислоты (например, серина) специального, так называемого терминального белка. В изученных вирусных системах терминальный белок — это всегда вирус-специфический (т. е. закодированный в вирусном геноме) полипептид, и фермент, осуществляющий присоединение нуклеотида, также всегда имеет вирус-специфическую природу. Нуклео-тид-белковый комплекс взаимодействует с З -концом одноцепочечной вирусной ДНК-матрицы при этом нуклеотид, входящий в комплекс с терминальным белком, комплементарен З -концевому нуклеотиду матрицы и служит затравкой, к которой присоединяются последующие нуклеотиды (рис. 136). Ясно, что к 5 -концу синтезированной таким образом цепи ДНК будет ковалентно присоединен белок. Рассмотренный способ инициации цепи ДНК реализуется, например, у аденовирусов и у фага ф29, у которых однонитевые ДНК-матрицы образуются в процессе репликации двунитевого гено-.ма (с.м. с. 267). [c.264]

    По мере разделения перекрученных qeneit исходной молекулы к их основаниям, ставшим теперь доступными, присоединяются комплементарные нуклеозид-5 -трифосфаты, но с противоположных концов двух цепей. При взаимодействии трифосфатов с З -оксигруппами предыдущих нуклеотидов в растущих цепях образуются новые 3, 5 -фосфодиэфирные связи и освобождаются молекулы неорганического фосфата. В результате каждая из двух родительских цепей дает начало двойной спирали с новой цепью, когда та становится достаточно длинной. Раньше принято было считать, что раскручивание исходных цепей может происходить только на концах двойной спирали. Сейчас установлено, что эти цепи расходятся в нескольких местах на протяжении всей спирали, а образовавшиеся в каждом месте полинуклео-тидные фрагменты соединяются в процессе еще одной реакции (она здесь не показана), давая законченные нити очень большой длины. ФФ — неорганический пирофосфат. [c.484]

    Наряду с коферментными ф-циями, выполняемыми в составе дегидрогеназ, НАД является также аллостерич. регулятором (регуляторные ф-ции обусловлены воздействием на участки фермента, ие входящие в активный центр) активности ряда ключевых ферментов энергетич. обмена донором остатка адениловой к-ты при репарации (восстановлении) разрывов фосфодиэфирных связей в цепях ДНК, осуществляемой ДНК-лигазой регулятором синтеза и репликации (самовоспроизведении) ДНК и др. [c.239]

    В ходе Р. рост цеш1 осуществляется благодаря взаимод. дезоксирибонуклеозидтрифосфата с З -ОН концевым нуклеотидом уже построенной части ДНК при этом отщепляется ш1рофосфат и образуется фосфодиэфирная связь. Рост полинуклеотидной цепи (рис. 2) идет только с ее З -конца, т. е. в направлении 5 3 (см. Нуклеиновые кислоты). Фермент, катализирующий эту р-цшо,-ДНК-полиме-раза (см. Полидезоксирибонуклеотид-синтетазы)-пе способен начать матричный синтез на одноцепочечной ДНК, если нет хотя бы олигонуклеотидного биспирального участка (т. наз, затравочного ол ггонуклеотида) комплементарного матрице затравочным олигонуклеотидом во мн. случаях является не ДНК, а РНК. [c.252]

    Чтобы обеспечить образование непрерывной цепи ДНК из многих таких фрагментов, в действие вступает особая система репарации ДНК, удаляющая РНК-затравку и заменяющая ее на ДНК. У бактерий РНК-затравка удаляется нуклеотид за нуклеотидом благодаря 5 -> З -экзонуклеазной активности ДНК-полимеразы. При этом каждый отщепленный рибонуклеотидный мономер замещается соответствующим дезоксирибонуклеотидом (в качестве затравки используется З -конец синтезированного на старой цепи фрагмента). Завершает весь процесс фермент ДНК-лигаза, катализирующий образование фосфодиэфирной связи между группой З -ОН нового фрагмента ДНК и 5 -фосфатной группой предыдущего фрагмента. Образование этой связи требует затраты энергии, к-рая поставляется в ходе сопряженного гидролиза пирофосфатной связи кофермента-никотинамидадениндинуклеотида (в бактериальных клетках) или АТФ (в животных клетках и у бактериофагов). [c.253]

    При наличии субстратов РНК-полимераза в открытом комплексе осуществляет иншдиацию. Первый нуклеотид (обычно это аденозин- или гуанозинтрифосфат) входит в состав цепи целиком, а последующие присоединяются к группе З -ОН предыдущего нуклеотида с образованием фосфодиэфирной связи и освобождением пирофосфата (см. Нуклеиновые кис.юты). На стадии инициации образующаяся РНК связана с матрицей и ферментом непрочно и может отделиться от комплекса. В этом случае РНК-полимераза, не покидая промотора, снова инициирует РНК (такой синтез коротких рибонуклеотидов наз. абортивным). Стадия ини- [c.619]

    ЭНДОДЕЗОКСИРИБОНУКЛЕХзЫ, ( рменты класса гидролаз, катализирующие гидролиз фосфодиэфирных связей внугри полинуклеотидной цепи ДНК (см. Нуклеазы). Наиб, важная фуппа Э.- рестршапазы. [c.480]

    В клеточных стенках тейхоевые кислоты ковалентно связаны фосфодиэфирными связями с остатками мурамовой кислоты пеп-тидогл,икана. Было предложено два возможных типа их расположения [412]. Согласно одному из них, цепи пептидогликана расположены перпендикулярно по отношению к внешним концам тейхоевых кислот. В соответствии с этой моделью клеточная стенка состоит из слоя пептидогликана толщиной 10 нм, снаружи от которого находится слой тейхоевых кислот толщиной 12 нм. Согласно другому предположению, цепи пептидогликана ориентированы параллельно поверхности бактериальной клетки. При равномерном распределении связей тейхоевой кислоты с пептидогликаном она оказывается тесно связанной с последним на всем протяжении стенки. [c.395]

    Дальнейшие события разберем на примере фага фХ174 (рис. 1Й1) у некоторых других фагов этой группы репликация генома имеет особенности, которые, впрочем, не изменяют обш,ую схему, фагоспецифический белок — продукт гена А — вносит одноцепо-чфчный разрыв в уникальное место родительской цепи в молекуле репликативной формы одновременно он соединяется ковалентна (при помощи фосфодиэфирной связи) с генерируемым при разрыве б -концевым нуклеотидом этой цепи. Возникающий в месте разрыва нефосфорилированный З -концевой нуклеотид представляет собой затравку. Впрочем, эта затравка может быть использована клеточной ДНК-полимеразой И для элонгации З -конца родительской (т. е. (-г)) цепи только при условии, что предсуществующий З -конец этой цепи будет вытеснен из дуплекса и тем самым обнажится однонитевая (—) матрица. Такое вытеснение осуществляется одной из клеточных хеликаз — продуктом гена гер. [c.273]


Смотреть страницы где упоминается термин ДНК фосфодиэфирная цепь: [c.134]    [c.146]    [c.219]    [c.222]    [c.126]    [c.140]    [c.46]    [c.77]    [c.116]    [c.273]    [c.320]    [c.125]    [c.393]    [c.643]    [c.297]    [c.250]    [c.259]    [c.509]    [c.509]    [c.172]    [c.116]   
Основы биологической химии (1970) -- [ c.134 ]




ПОИСК







© 2025 chem21.info Реклама на сайте