Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства размягчения

    Вполне понятно, что из шихты можно получить кокс достаточной прочности, если угли, входящие в ее состав, обладают свойствами размягчения и вспучивания. Однако избыточная плавкость может быть нежелательной, поскольку она влечет за собой образование пенки , ухудшающей показатель МЮ, вследствие ее хрупкости, а не из-за недостатка спекания. Так как нет в распоряжении достоверной теории, выводы приходится делать по аналогии с известными составами шихт. [c.247]


    Первый метод для онределения экструзивных свойств размягченного угля с применением давления был разработан, повидимому, Портером [151]. Этот метод позволял также определять поведение размягченного угля на основе дилатометрического принципа, максимум давления вспучивания, после того как происходит 10-процентное свободное вспучивание, и потерю в весе образца при температуре около 566°. Аппарат показан на рис. 7. [c.210]

    Свойства размягченного н расплавленного стекла [c.15]

    В зависимости от длины молекулярной цепи и структуры полигликолей вязкость их может изменяться в широких пределах от 6—8 до 10 ООО сст и более при 50° С. Полигликолевые масла отличаются от нефтяных масел лучшими противоизносными свойствами, низкой температурой застывания (от 55 до —65° С), высокими индексами вязкости (в пределах 135 180), малой испаряемостью. Полигликолевые масла не образуют смолистых соединений при повышенных температурах в присутствии кислорода, воздуха, выдерживают высокие температуры (до 300° С), не корродируют металлы, не вызывают набухание или размягчение синтетической и натуральной резины. Воспламеняются они с большим трудом, чем нефтяные масла. В табл. 34 приведены свойства масел на основе полигликолей, а на рис. 75 — их вязкостно-температурные кривые. На этом же рисунке для сравнения нанесены вязкостно-температурные кривые минеральных масел МК-8 и турбинного МК-22. Из рисунка видно, что полигликолевые масла имеют более пологую вязкостно-темпера- турную кривую, чем минеральные масла равной вязкости. [c.147]

    Для характеристики основных свойств битумов кроме общих методов испытания применяют также специальные, по которым определяют глубину проникания иглы (пенетрацию), температуру размягчения, растяжимость, испаряемость, растворимость и др. [c.231]

    Из сказанного видно, что в нерегулярно разветвленных полимерах, как, например, промышленный полиэтилен, такие свойства, как температура плавления, температура размягчения при низких нагрузках, модуль упругости при малых нагрузках, предел текучести, твердость поверхности, зависят главным образом от кристалличности. [c.170]

    Обычный или стандартный каучук GR-S получается полимеризацией при 50°, а более новый, так называемый холодный сорт GR-S получается при 5°. Название холодный дано этому каучуку потому, что он получается при более низкой температуре. С новыми сортами печной сажи холодный каучук дает самую лучшую протекторную резину, какую только удавалось получать из какого бы то ни было сорта каучука. Производство холодного каучука составляет около 65% от общего количества каучука GR-S. GR-S имеет все свойства натурального каучука, но характеризуется более высоким показателем гистерезиса и потому не применяется для производства каркасов шин, для которых в ходе эксплуатации имеет место сильное нагревание, что ввиду плохой теплопроводности резины приводит к размягчению ее и прорыву камер. Так как 75— 80% всего каучука используется для производства покрышек, камер и других деталей автомобилей, то потребность в природном каучуке для этих целей высока п в настоящее время ежегодный импорт составляет около 400 ООО т. [c.211]


    Неравномерное протекание реакции вследствие влияния распределения скоростей в поперечном сечении потока может вызывать нежелательные эффекты. При полимеризации вязких смесей в ламинарном потоке будет наблюдаться более неравномерное распределение полимеров по молекулярной массе, чем в реакторах с хорошим перемешиванием. Это будет отражаться на некоторых физических свойствах продуктов, например изменяется интервал температур размягчения. В случае протекания побочных или последовательных реакций деполимеризации неточность определения времени реакции может вызывать такие серьезные трудности, что окажется необходимым перейти от реакторов выт не-ния к какой-нибудь конструкции реакторов с мешалками. [c.152]

    Существенно зависят от состава битумов и технические свойства, что иллюстрируется представленными на рис. 11 зависимостями. Увеличение Кр.с. масляного компонента и уменьшение отношения А/С приводят к снижению температуры размягчения, уменьшению пенетрации при О С и увеличению дуктильности битумов с одинаковой пенетрацией при 25 °С. [c.28]

    В большинстве случаев повышение температуры окисления приводит к уменьшению пенетрации битума с заданной температурой размягчения (рис. 26) [60]. Однако, как видно из рис. 27, в интервале температур 250—280 °С, при которых наблюдаются более высокие скорости реакций, эффект менее заметен, чем, например, в интервале температур 180—210 °С, не представляющих практического интереса из-за низкой скорости реакции. При дальнейшем повышении температуры до 300 °С влияние температуры на свойства битумов вновь может проявляться значительнее. Так, битумы с температурой размягчения 55 °С, полученные окислением гудрона средневосточной нефти при 250, 275 и 300 °С, имеют пенетрацию при 25 °С соответственно 42, 41 и 35-0,1 мм [61]. Возможно, основной причиной рассматриваемого эффекта являются в области низких температур — уменьшение содержания кислородсодержащих соединений в битуме при повышении температуры окисления, в области высоких — деполимеризация. Поэтому нужно проводить экспериментальную проверку роли условий окисления во избежание необоснованного отказа от повышения температуры, способствующего увеличению производительности. В случае окисления при высокой температуре рекомендуется охлаждать готовый битум сразу после его получения на 20 °С [c.50]

    При применении разных окислительных аппаратов свойства получающихся битумов могут различаться. Так, битумы, полученные в кубе, имеют более низкую температуру размягчения, более высокую температуру хрупкости (рис, 39) [93] и более высокую дуктильность [89] по сравнению с битумами, полученными в колонне. Это имеет определенное, но не решающее значение прп выборе типа окислительного аппарата, так как битумы с такими свойствами могут быть получены и другим путем — увеличением отбора дистиллята при подготовке гудрона для окисления или вовлечением асфальта деасфальтизации в сырье окисления. [c.68]

    В работе [47] изучено влияние глубины отбора дистиллятов при получении гудронов из арланской нефти на состав и свойства окисленных битумов (табл. 13). Как видно из представлен ных результатов, битумы с одинаковой пенетрацией при 25°С, полученные из более тяжелого сырья, содержат меньше асфальтенов и масел и больше смол. Температура размягчения таких битумов ниже, а дуктильность выше. [c.85]

    Изучалось также влияние температуры на состав и свойства битумов. В работе [118] показано, что при повышении температуры окисления гудронов в интервале 232—260°С незначительно увеличивается содержание асфальтенов (примерно на 3% отн.) в битумах с температурой размягчения 104°С и уменьшается пенетрация при 25°С на один пункт. В целом же отмечается, что в процессе окисления содержание асфальтенов увеличивается существенно, а ненасыщенных — почти не меняется. Нафтеноароматические углеводороды превращаются в полярные ароматические, а последние в свою очередь — в асфальтены. [c.85]

    Все описанные методы позволяют рассчитать потенциал битума в нефти, но по ним нельзя судить о свойствах битума дуктильности, температуре размягчения, растворимости и т. д. [137,61]. [c.95]

Рис. 70. Свойства битумов, полученных из гудрона котур-тепинской нефти (в скобках указаны вы.чод битума или температура размягчения по КиШ) Рис. 70. <a href="/info/62711">Свойства битумов</a>, полученных из гудрона котур-тепинской нефти (в скобках указаны вы.чод <a href="/info/20322">битума</a> или температура размягчения по КиШ)
    Экономика процесса деасфальтизации пентаном в большой мере определяется возможностью утилизации асфальта, характеризующегося высокой температурой размягчения [164]. В связи с этим изучено и предложено использовать асфальт в качестве компонента сырья для производства битумов [45]. При смешении асфальта с гудроном получаются дорожные битумы различных марок при содержании асфальта в смеси 20—30% (масс.) [46, 47, 120] (их свойства были описаны в гл. 3). [c.115]

    В оценке технических свойств твердых битумов значительную роль играют температура размягчения, твердость и растяжимость. [c.84]


    В зависимости от основных свойств — температуры размягчения, глубины проникания иглы, растяжимости, температуры хрупкости, сцепляемости с каменным материалом (адгезии) и др. — различают нефтяные битумы пяти марок. Битумы первых трех (I—III) применяются в дорожном деле. Битумы марки IV используются главным образом в кровельной промышленности, в гидротехнических сооружениях, для брикетирования угольной мелочи, для смазки шеек прокатных станов, при горячей прокатке металла. Битум марки V находит применение в лакокрасочной промышленности, для изоляционных покрытий трубопроводов, для электроизоляции и т. д. [c.144]

    Термопласт в зависимости от степени полимеризации - вещество от белого до красно-бурого цвета без запаха и без вкуса не оказывает никакого физиологического воздействия. Устойчив к действию воды, слабых кислот и оснований, а также большинства органических растворителей. Обладает очень низкой электро- и теплопроводностью р = 1,38 г/см прочность на разрыв 550 кгс/см прочность на сжатие 700 кгс/ см2 Медленно разлагается под действием света Трудно воспламеняем температура размягчения 7 5-80° С. Свойства мо- [c.215]

    Термопласт вещество от белого до желтоватого цвета не имеет вкуса, запаха и не проявляет какого-либо физиологического действия. Устойчив по отношению к действию воды, оснований, кислот (за исключением азотной кислоты), растворов солей, жиров и жирных масел неустойчив к действию галогенов, органических растворителей и минеральных масел. Обладает низкой электро- и теплопроводностью р = 0,92-0,97 г/см прочность на разрыв 185-290 кгс/см эластичен возгорается температура размягчения 110-135°С. Свойства сильно зависят от способа получения и могут изменяться при введении наполнителей, других полимеров и красителей. [c.216]

    В производстве остеклованных микропроводов используется свойство размягченных стеклянных трубок вытягиваться в капилляры, а также способность металлов заполнять эти капилляры в момент вытягивания [123, 124]. Принципиальная схема установки показана на рис. 44. [c.88]

    Целесообразно в первум очередь рассмотреть изменение свойств размягченного стекла, сначала в процессе его нагревания, а затем — охлаждения. [c.100]

    Битумы характеризуются следующими показателями твер — дост ью — глубиной проникания стандартной иглы (пенетрацией), температурой размягчения, хрупкости, растяжимостью в нить (ду — кальностью), адгезией, температурой вспышки, реологическими и некоторыми другими свойствами. [c.141]

    Нефтяные битумы представляют собой жидкие, полутвердые или твердые нефтепродукты, состоящие из асфальтенов, смол и масел (мальтенов) асфальтены придают твердость и высокую температуру размягчения смолы повышают цементирующие свойства и эластичность масла являются разжижающей средой, в которой растворяются смолы, набухают асфальтены. [c.73]

    Битумы характеризуются следующими показателями твердостью (пенетра — цией), температурой размягчения, растяжимостью в нить (дуктильностью), температурой хрупкости, адгезией, температурой вспышки, реологическими свойствами и др. [c.73]

    Полихлоропрен, полученный при низких температурах, обладает высоким сопротивлением разрыву и более высокой температурой размягчения, обусловленной большим содержанием кристаллической фазы [18]. Благодаря этим свойствам хлоропреновый каучук низкотемпературной полимеризации, выпускаемый под маркой НТ, в качестве клеев нашел широкое применение в кожевеннообувной промышленности и в других отраслях народного хозяйства [19]. [c.372]

    Силоксановые блоксополимеры с жесткими блоками (поли-карбонатными, полисульфоновыми, полиарилатными, нолисилари-ленсилоксановыми и др.) отличаются от других силоксановых эластомеров высокими механическими свойствами в ненаполненном невулканизованном состоянии (сопротивление разрыву 5—20 МПа, относительное удлинение 150—1000%), которые сохраняются до температуры размягчения жесткого блока [24, 25].- По морозостойкости они не отличаются от обычных силоксановых вулканизатов, если длина гибкого блока достаточно велика, а по термической стабильности на воздухе уступают напол ненным вулканизатам, но превосходят ненаполненные. Их перерабатывают либо формованием при температурах выше температуры размягчения жесткого блока, либо из растворов как пленко- и волокнообразующие материалы. [c.496]

    Взаимосвязь технических свойств битумов. О качестве битума судят, сопоставляя разные показатели его технических свойств. Основным классификационным показателем принята пенетрация при 25°С. Остальные показатели представляют в виде зависимостей от пенетрации, поскольку они меняются с изменением пенетрации. Характер изменения ряда показателей, как правило, одинаков. Например, увеличение пенетрации при 25°С приводит к снижению температуры размягчения при этом температура хрупкости также снижается. 3,ависимость же дуктиль ности от пенетрации носит более сложный характер. Максимальная дуктильность наблюдается при некоторых средних-значениях пенетрации (рис. 1). [c.13]

    В качестве комплексной характеристики свойств битумов используют индекс пенетрации, предложенный Дж. Пфайффером и П. ван Доормаалем. Эта характеристика выражает взаимозависимость пенетрации и температуры размягчения. Индекс пенетрации может быть определен по номограмме, представленной на рис. 2. Как видно, при равной пенетрации индекс пенетрации тем выше, чем выше температура размягчения. Во избежание получения битумов с низкой дуктильно-стью верхнее значение индекса пенетрации ограничивают. Конкретные пределы изменения индекса пенетрации устанавливают в зависимости от условий применения битумов. [c.14]

    В табл. 2 представлены данные, показывающие влияние сырья и технологии его переработки на степень аномалии вязкости битумов. Как видно, битумы, имеющие примерно одинаковую температуру размягчения (48,5 4,5°С), но полученные окислением остатков разных нефтей, различаются степенью аномалии. Так, битум из нефти месторождения Галф Коаст I, являющийся в обычном представлении твердым телом, имеет характер течения ньютоновской жидкости. В то же время несколько более мягкий битум из нефти северо-восточного Техаса отличается заметной аномалией течения. При использовании одного и того же сырья битумы, получаемые перегонкой с паром или в вакууме, в меньшей степени обладают свойствами неньютоновской жидкости, чем окисленные битумы. Углубление переработки сырья, т. е. получение более высокоплавких битумов, как в процессе перегонки, так и в процессе окисления приводит к повышению аномальности битумов, причем в случае окисления это влияние существеннее. Степень окисления, определяемая, например, разностью температур размягчения битума н сырья, оказывает большое влияние на аномалию течения битума при окислении до одинаковой температуры размягчения гудронов разной вязкости, полученных из одной нефти, наиболее ярко вы- [c.17]

    Интересную связь между некоторыми свойствами битумов показал В. Хьюкелом [28]. бн предложил диаграмму для определения зависимости консистенции битумов от температуры, причем при температурах ниже температуры размягчения консистенция выражается в единицах пенетрации, а при более высоких температурах — в единицах вязкости (рис. 14). Шкала консистенции построена таким образом, чтобы результаты испытаний для большой группы битумов могли быть представлены прямыми линиями. Эта группа включает остаточные битумы разных нефтей, содержащие небольшое количество твердых [c.30]

    Изменения комионентного состава остатков в зависимости от глубины перегонки изучались разными авторами. В табл. 10 приведены данные по групповому составу и свойствам битумов полученных на опытных установках, из типичных нефтей страны [29]. Видно, что с углублением перегонки возрастает содержание в остатке асфальтенов и смол и уменьшается содержание масел, повышается температура размягчения и уменьшается пенетрация остатка—битума. В работе [104] получены аналогичные результаты н определены [104, 105] температуры отбора газойлей, необходимые для производства битумов с заданной.пе- [c.80]

    Во избежание крекинга при перегонке в вакуумных колоннах непрерывного действия температуру предварительного нагрева мазутов в трубчатых печах, определяющую долю отгона, ограничивают примерно 400°С. При периодической перегонке температура нагрева должна быть еще ниже. В работе [106] показано, что при перегонке в лабораторных условиях мазута ромашкинской нефти крекинг начинается уже при 320—325°С (температуры измерялись в паровой фазе). Это подтверждается изменениями свойств остатка остаток становится более жидким (увеличивается пенетрация, снижается температура размягчения, уменьшается дуктильность), возрастает содержание асфальтенов и уменьшается содержание смол. [c.81]

    Соответственно изменению компонентного состава асфальтов меняются и их свойства с увеличением содержания тяжелы.х компонентов повышается температура размягчения и у.меньша- втся пенетрация асфальтов. [c.84]

    В табл. 20 показан групповой состав битумов, полученных по разны.м технологическим схемам из гудрона котур-тепинской нефти, а на рис. 70 — свойства этих битумов. Как видно, при равном выходе на нефть битумы, полученные по схемам с предварительным окислением, характеризуются более высоким отношением ароматические углеводороды парафино-нафтены, что обеспечивает им более высокую дуктильность. Это особенно заметно, когда окисляется только часть сырья, но более глубоко. В общем, рекомендуется гудрон первой ступени вакуумной перегонки (остаток выше 470°С, вы.ход на нефть 28% масс.— рис. 71) разделять на два потока, один из которых (15—45%) окислять до температуры размягчения 70—100 °С, после смешения окисленного и неокисленного потока их следует подвергать дополнительной вакуумной перегонке с получением остатка выше 510 °С — битума. [c.108]

    В табл. 22 представлены некоторые свойства продуктов, полученных нз мазуга котур-тепинской нефти. Как видно из таблицы, с новышение.м степени предварительного окисления возрастает коксуемость продукта, получаемого последующей вакуумной перегонкой окисленного материала, а дуктильность при этом проходит через максимум. Экстремальный характер зависимости дуктильности от степени предварительного окисления объясняется тем, что при окислении увеличивается доля асфальтенов (см. табл. 21 и 23), а это отрицательно сказывается на дуктильности [120]. При определенной степени окисления влияние возрастающего содержания асфальтенов сказывается сильнее, чем упомянутое выше влияние ароматических углеводородов. Оптимальной глубиной предварительного окисления нужно считать окисление до получения полупродукта с температурой размягчения по КиШ примерно 40 °С. В ходе последующей ва- [c.118]

    Опыты П. Сабатье и его сотрудника Сандэрана возбуждают заслуженное внимание и представляют наиболее интересный пример неорганического синтеза нефти. Смесь непредельного углеводорода, с водородом подвергается (в присутствии катализатора — никеля) нагреванию нри температуре не свыше 180°. Происходит процесс гидрогенизации ненасыщенных углеводородов. В результате получается светло-желтая жидкость удельного веса 0,790, состоящая из предельных углеводородов и напоминающая по своим свойствам пенсильванскую нефть. При несколько измененных условиях опыта получаются и другие результаты так, если пропускать ацетилен без водорода над никелем при температуре 200°С, получается вещество, богатое ароматическими углеводородами. При вторичном пропускании этого последнего над никелем получается смесь нафтенов, т. е. нефть типа бакинской. Здесь, очевидно, мы имеем процесс полимеризации и образования под влиянием катализаторов циклических соединений. Вертело доказал, что полимеризация ацетилена (С2Н2) дает бензол (СаНе) при температуре размягчения стекла. Далее в литературе встречаются указания, что углеводороды могут получаться и при других реакциях. Например, еще в 1863 г. была известна возможность непосредственного получения ацетилена при пропускании водорода между угольными концами вольтовой дуги, но тогда на это не обратили должного внимания. Еще Вертело указал, что щелочные металлы, реагируя с СО2, образуют карбиды, или ацетиды и кислород, который потом уходит из сферы реа- [c.302]

    Ни первый, ни второй метод не дают понятия о температурной зоне размягчения асфальта, при которой он начинает приобретать значительную пластичность или текучесть, лишающую его ценных механпчг ских свойств. Между тем определение этой зоны часто бывает полезно при оценке асфальта как строительного материала и как сырья для лаков и т. п. Чем 5 же эта область, чем резче переход от твердого состояния к жидглму или, но крайней мере, ясно [c.362]


Смотреть страницы где упоминается термин Свойства размягчения: [c.232]    [c.145]    [c.310]    [c.419]    [c.547]    [c.29]    [c.71]    [c.90]    [c.95]    [c.110]    [c.114]    [c.208]   
Нефтяные битумы (1973) -- [ c.39 , c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Механические свойства полимеров в области размягчения

Физические свойства полимеров размягчения

свойств Е и его производных от температуры в интервале размягчения фиг



© 2025 chem21.info Реклама на сайте