Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкие церия

    Всего известно около 70 собственно редкоземельных минералов и еще около 200 минералов, в которые эти элементы входят как примеси. Это свидетельствует о том, что редкие земли вовсе не такие уж редкие, а это старинное общее название скандия, иттрия и лантана с лантаноидами — не более чем дань уважения прошлому. Они не редки — церия в земле больше, чем свинца, а самые редкие из редкоземельных распространены в земной коре намного больше, чем ртуть. Все дело в рассеянности этих элементов и сложности отделения их один от другого. Но, конечно, лантаноиды распространены в природе не одинаково. Элементы с четными атомными номерами встречаются значительно чаще, чем их нечетные соседи. Это обстоятельство, естественно, сказывается на масштабах производств и ценах на редкоземельные металлы. Самые труднодоступные лантаноиды — тербий, тулий, лютеций (заметьте, все это лантаноиды с нечетными атомными номерами) — стоят дороже золота и платины. А цена церия более 99%-ной чистоты — всего 55 рублей за килограмм (данные 1970 года). Для сравнения укажем, что килограмм мишметалла стоит 6—7 рублей, а ферроцерия (10% железа, 90% редкоземельных элементов, в основном церия) — всего пять. Масштабы использования РЗЭ, как правило, пропорциональны ценам.. .  [c.76]


    Сейчас установлено, что РЗЭ не так уж редки (табл. L7). Даже самые малораспространенные из РЗЭ — лютеций, европий, тулий, гольмий — имеют кларк (мае. % в земной коре) выше, чем у ртути ( 8-10 ). Менее редкие РЗЭ, такие как лантан, церий, иттрий, по распространенности сравнимы со свинцом и медью, их кларк больше,, чем [c.63]

    Браунер [5, с. 326—327] дает следующую оценку состояния проб-. (емы РЗЭ и своей собственной роли в ее решении. Что касается места группы элементов редких земель, которая начинается с Се=140 и кончается УЬ=173, в периодической системе элементы эти, кроме церия, трудно поместить в периодическую систему в том виде, в котором она до сих пор существовала . Браунер (Журн. Русск. Физ. Хим. 06- [c.87]

    Новые данные, полученные при изучении редкоземельных элементов, вновь поставили вопрос, в каком порядке, не нарушая логики построения периодической системы, разместить в ней семейство редких земель. В 1902 г. в итоге своих исследований Б. Браунер пришел к идее выделить все эти элементы в порядке увеличения атомных масс от 140 до 180 в совершенно особую, замкнутую интерпериодическую группу и поместить ее в одной большой клетке, расположенной в середине периодической системы, в восьмом ряду четвертой группы, между элементами этого ряда — церием и танталом. [c.289]

    Различные элементы представлены и распространены на Земле неравномерно. Большинство легких элементов с массовыми числами до 50 составляет в сумме - 99,4 атомных долей, % трех оболочек атмосферы, гидросферы и литосферы. На долю остальных элементов приходится всего - 0,6 атомных доли, %. В соответствии с этим выделяют так называемые редкие элементы, содержание которых на Земле мало. Так, для цезия оно составляет 9-10 %, для рения для церия 5-10 %, а содержание других ланта- [c.43]

    Некоторые сведения о геохимии РЗЭ приведены в [11]. Среди лантаноидов наиболее распространены лантан, церий и неодим церия в земной коре больше, чем олова иттрия больше, чем свинца менее распространены празеодим, самарий, гадолиний, диспрозий, эрбий и иттербий самые редкие — европий, тербий, гольмий, тулий и лютеций. РЗЭ входят в значительных концентрациях в различные комплексные руды, содержащие торий, титан, ниобий и другие элементы. [c.51]

    Различные элементы представлены и распространены на Земле неравномерно. Большинство легких элементов с массовыми числами до 50 составляют в сумме 99,4% трех оболочек атмосферы, гидросферы и литосферы. На долю остальных элементов приходится всего 0,6%. В соответствии с этим выделяют так называемые редкие элементы, содержание которых на Земле мало. Так, для цезия оно составляет 9-10 5%, для рения — 9-10 %, для церия — 5-10 %, а содержание других лантаноидов значительно меньше. Другой характеристикой, отражающей распространенность элементов в природе, является способность концентрироваться, образуя месторождения. Так, общее содержание меди на Земле оценивается в 3-10 3%, т.е. сравнительно невелико. Однако медь — металл, известный челове- [c.251]


    ВЫДЕЛЕНИЕ ЦЕРИЯ ИЗ СМЕСИ РЕДКИХ ЗЕМЕЛЬ 49 [c.49]

    Наиболее известные методы извлечения церия из смесей редких земель основаны на легком окислении церия и последующем осаждении соединений четырехвалентного церия в результате гидролиза. К таким методам относятся перманганатно-фосфатный [1, 2] метод, основанный на превращении церия в двуокись ири помощи перманганата [3], электролитический [2] и броматный [4]. [c.49]

    Четырехвалентный церий экстрагируется даже при низкой концентрации азотной кислоты, а при высокой кислотности он сильно уменьшает извлечение остальных редких элементов. Установлено, что при кислотности 2 М НЫОз РЗЭ образуют с ТБФ [c.202]

    Обширная группа элементов в шестом периоде периодической системы Менделеева, известная под названием редких земель нли лантаноидов, состоит из 15 элементов лантана (Ьа), церия (Се), празеодима (Рг), неодима (N(1), прометия (Рт) самария (8т), европия (Ей), гадолиния (0(1), тербия (ТЬ), диспрозия (Ьу), гольмия (Но), эрбия (Ег), тулия (Ти), иттербия (УЬ) и лютеция (Ьи). Этим элементам в природе сопутствует иттрий (V), который чрезвычайно с ними сходен по химическим свойствам. Поэтому он обычно рассматривается совместно с этой группой элементов. [c.7]

    Исторически закрепившийся за элементами этой группы термин редкие можно применять только в геохимическом смысле, но в обычном, особенно по отношению к некоторым членам этого ряда — церию, иттрию, неодиму и лантану,— он скорее характеризует степень их освоения, нежели действительную распространенность в природе. [c.10]

    Электрохимический метод восстановления рзэ из расплавов применяется при получении больших количеств мишметалла, церия и некоторых других металлов. При выделении же более редких металлов в десятках и даже сотнях килограммов в особо чистом состоянии более эффективен металлотермический метод [192]. Реакция восстановления активным металлом принципиально возможна, если она является экзотермичной. Для редкоземельных элементов такому требованию удовлетворяют в первую очередь щелочные и щелочноземельные металлы [1256]. Поскольку щелочноземельные металлы более удобны в работе, для восстановления рзэ применяют кальций и, в некоторых случаях, барий. Известно также применение для этой цели калия [12421 и металлов третьей группы — алюминия и лантана [814, 1149] (правда, в последнем случае для осуществления реакции и выделения образовавшегося продукта необходимы особые условия). [c.22]

    Ионы церия (IV) могут быть перенесены в неполярные органические среды типа циклогексана путем комплексообразования с 4,4 -диоктадекаокси-2,2 -бипиридин-1,Г-диоксидом А (схема 3.252). Это является одним из примеров межфазного процесса экстракции катиона, что встречается довольно редко. Реагент был использован для некоторых реакций окисления, приведенных ниже. Противоионом экстрагируемому Се-комплек-су является нитрат-ион. [c.410]

    Многие алкалоиды при обработке серной, азотной, хромовой или молибденсерной кислотами, коричным альдегидом - - H I, сульфатом церия, аммиаком и др. дают интенсивные цветные реакции, которые могут применяться для обнаружения этих соединений. Однако лишь в очень редких случаях эти реакции настолько специфичны, что их одних достаточно для идентификации алкалоида. [c.1057]

    По мере накопления экспериментального материала выяснилось, что высокие давления вызывают зачастую уникальные изменения в веществах, которые никаким другими способами достигнуты быть не могут. Это может проявляться в переходе электрона с одной орбитали на другую (церий, цезий), переходе вещества из диэлектрика в состояние с металлической проводимостью (фосфор, оксиды железа, никеля, хрома), переходе вещества из. модификации с малой плотностью в модификацию с большой, в изменении валентности, получении совершенно новых соединений и т. д. Все эти явления крайне интересны, и далеко не всем им в настоящее время дано убедительное объяснение. Давление существенно влияет и на кинетику различных процессов. Многочисленные примеры показывают, как действует давленпе на с.чорость реакций различных порядков и какие выводы можно сделать па основании исследования таких процессов. Действие давления на сложные химические реакции редко удается объяснить до конца, ибо очень трудно выделить в суммарном эффекте, где давление проявило себя как действующее на равновесие процесса, а где — на его кинетику. Особо следует указать на давление, влияющее на скорость пространственно-затруд-ненных реакций. [c.6]

    Таким образом, из 17 элементов, относящихся к РЗЭ, он учитывал только пять лантан, церий, дидим, эрбий и иттрий. Введенный Менделеевым в первые варианты периодической системы дидим впоследствии был расшифрован (с. 75) как смесь неодима и празеодима. Эрбий, иттрий и открытый к этому времени, но охарактеризованный не полно тербий тоже представляли собой смесь нескольких элементов (с. 65). Они, как выяснилось позже, содержали значительные количества гадолиния, тербия (истинного), диспрозия, гольмия, эрбия (ис-гинного), тулия, иттербия, лютеция, а также скандия и истинного иттрия. Менделееву были хорошо известны экспериментальные трудности, связанные с выделением редких металлов в чистом виде и особенно с их анализом. Обсуждая проблему размещения в периодической системе дидима и лантана, Менделеев писал [18, с. 145] о величине нх эквивалента Ошибку в определении можно ждать еще и потому, что в чистоте препаратов нет возможности убедиться чем-либо киым, как М]Югократною кристаллизациею, а она, как известно, не всегда служит для отделения от изоморфных примесей . [c.83]


    Особенно важной является оценка работы Менделеева в области РЗЭ Богуславом Браунером. В статье Элементы редких земель , написанной Браунером по просьбе Менделеева и опубликованной впервые в седьмом издании Основ Химии в качестве Дополнения , подчеркивается определяющая роль работ Менделеева по установлению истинной валентности и правильного атомного веса церия и других РЗЭ [20]. Браунер отмечает, что именно Менделеев предложил для окислов большинства РЗЭ формулу КаОз. Позднее, — пишет Браунер [5, с. 316], — Мариньяк, Клеве, Нильсон, Крюсе, Браунер и их ученики, Джонс фон Шееле, Бендикс, Мутман и его ученики, Коппель и др., исследовали соединения редких земель, и их исследования еще больше доказали правильность взгляда Менделеева, так что состав главных основных окислов или земель выражают теперь всегда формулой РгОз - Так же как Урбен, Браунер считал очень важным для развития РЗЭ предложенный Менделеевым новый метод разделения смесей РЗЭ Двойные азотнокислые соли аммония были применены впервые Менделеевым (1873) для разделения лантана от дидима. Из смеси обеих кристаллизуется в присутствии свободной азотной кислоты прежде всего двойная соль лантана. Ауэр фон Вельсбах пользовался таким же раствором и разложил дидим на празеодим, двойная соль которого кристаллизуется с двойной солью лантана, и на неодим, двойная соль которого остается в маточном растворе [5, с. 321]. [c.87]

    В конце 1885 г. К. Ауэр фон Вельсбах в Вене изобрел газока-лильную лампу, в которой бунзеновское пламя накаливает добела жаровую сетку, получаемую в виде зольного скелета из нитей, пропитанных солями редких металлов церия, лантана, дидима, тория, циркония и др. Такая сетка при накаливании давала яркое освещение. В своем патенте К. Ауэр отметил, что сплав окисей редких металлов проявляет особенно сильную способность к светоизлуче-нию. Первоначально высказывались сомнения в практической ценности данного изобретения, так как окиси названных металлов в то время демонстрировались в помещениях немногих химических лабораторий в качестве драгоценных редкостей и ценились на вес золота. Однако все же ауэровский свет в 90-х годах XIX в. осветил улицы Вены, Берлина и других столичных городов. Это является лучшим доказательством того, что практические потребности в данном изобретении заставляют добывать из-под земли глубоко скрытые в ней клады . [c.287]

    В самом деле, редкие минералы церит, торит, монацит, из которых добывали незначительные количества редких земель, были открыты агентами Ауэровского общества в виде мощных золотисто-желтых монацитовых песков в золотоносных областях Бразилии, Австралии, Северной Америки и на Урале. Тысячи тонн мона- [c.287]

    Алланит — распространенный минерал во многих случаях он содержит лишь незначительное количество редких земель. Церит — более редкий минерал, распространенный в Риддархиттане (Швеция) и в немногих других местах. Гадолинит находится в заметных количествах в Скандинавских странах, в Льяно (Техас) н в некоторых других местах. [c.46]

    Для лопарита — богатого ниобием и церием перовскита — также типичны кристаллы кубического облика, обусловленного исключительным развитием граней псевдокуба 100 с плохо развитыми гранями псевдооктаэдра 111 . В монокристаллах лопарит наблюдается очень редко, преобладают двойники прорастания (8), аналогичные двойникам флюорита. [c.158]

    Нахождение в природе. По содержанию в земной коре (10- %) РЗЭ, особенно элементы цериевой подгруппы, являются достаточно распространенными. Элементы нечетных номеров менее распространены, чем четных. Содержание наиболее редкого из РЗЭ — тулия (8Х Х10 %) соизмеримо с содержанием таких широко применяемых в практике элементов, как сурьма (4-10-=%) и кадмий (5-10- %). В земной коре наиболее распространенного из РЗЭ церия содержится почти столько же (4,5-10- %), сколько олова (4-10-з%) или цинка (5-10 3%). Вопрос о нахождении прометия в земной коре окончательно не решен. РЗЭ в значительной степени являются рассеянными элементами. [c.190]

    Оксиды РЗЭ, или редкие земли в основном имеют состав ПгОз (где Ьп — лантоноид). Исключение составляют церий (который при окислении образует оксид СеОа), празеодим (при прокаливании в токе кислорода или на воздухе образуется РгеОц), тербий (при тех же условиях ТЬ40у). Если нагревание вести в токе водорода, то при 500—600 °С празеодим и тербий дают оксиды типа [c.192]

    РЗЭ могут быть разделены на три группы методом, основанным на различной растворимости двойных сульфатов РЗЭ и щелочных металлов Ltt2(S04)з Na2S04 12Н2О в холодном насыщенном растворе сульфата натрия. Це-риевая группа (лантан, церий, празеодим, неодим, самарий), а также скандий дают нерастворимые двойные сульфаты. Тербиевая группа (европий, гадолиний, тербий) образуют умеренно растворимые сульфаты. Иттриевая группа (иттрий, диспрозий, гольмий, эрбий, туллий, иттербий, лютеций) характеризуется образованием растворимых двойных сульфатов. В аналитической химии в настоящее время этот метод применяется исключительно редко, так как дает возможность лишь с небольшой точностью разделить РЗЭ на группы. Он имеет скорее исторический интерес, так как от него происходит деление на цериевые и иттриевые земли. [c.193]

    Щавмевая кислота и ее соли не осаждают алюминий из растворов его солей. Это помогает отличать алюминий от ряда редких земель, относящихся к этой же аналитической группе (церия, лантана, не,одима, празеодима и эрбия), а также от щелочноземельных элементов. [c.213]

    Иодат калия образует белый осадок ТЬ(ЛОз)4 даже в присутствии 50% (<по объему) концентрированной азотной кислоты хло1риды Д0ЛЖ1НЫ отсутствовать. Таким же образам осаждаются цирконий и четырехвалентный церий, но иодаты трехвалентных редких земель легко растворяются в азотной кислоте. Эта реакция 1на торий очень чувствительна осадок может быть освобожден от следов других иодатов (за исключением Zr и Се), если его обработать несколькими миллилитрами горячего раствора, приготовленного растворением 4 г КЛОз в 500 мя , 2N азотной кислоты. [c.604]

    X Се. Предельная концентрация 1 61 ООО. Фосфорномолибденовая кислюта является строго специфическим реактивом на трехваленттный церий только в пределах группы редких земель, включая торий и цирконий. А. К. [c.614]

    Из приведенных данных видно, что наиболее распространенными являются элементы цериевой подгруппы, составляющие почти 72% от суммы всех рзэ, включая и иттрий. Данные табл. 1 хорошо иллюстрируют применимость к рзэ правила Оддо и Гаркинса, согласно которому элементы нечетных порядковых номеров более редки, чем четных. Интересно сравнить распространенность рзэ с распространенностью других элементов. Так, наиболее редкий элемент — тулий (8-10" %) — участвует в образовании земной коры в такой же степени, как и широко применяемые на практике сурьма и кадмий. А наиболее распространенного из рзэ церия (4,5-10" %) в земной коре почти столько же, сколько цинка, олова или свинца. [c.10]

    Среди многочисленных способов выделения и разделения рзэ экстракционное фракционирование для определения индивидуальных элементов в сумме не нашло применения в анализе, хотя оно и начинает развиваться в технологии получения редкоземельных препаратов. Зато отделение рзэ от щелочных, щелочноземельных и некоторых трансурановых и редких металлов производится чрезвычайно эффективно и в технологии руд и материалов, и в препаративной и аналитической практике. Здесь будут кратко рассмотрены возможности разделения группы рзэ и более подробно — аналитические проблемы выделения церия и отделения редкоземельных металлов от посторонних элементов. [c.123]


Смотреть страницы где упоминается термин Редкие церия: [c.120]    [c.426]    [c.261]    [c.244]    [c.575]    [c.88]    [c.90]    [c.288]    [c.168]    [c.346]    [c.295]    [c.183]    [c.24]    [c.158]    [c.441]    [c.587]    [c.613]    [c.618]   
Химико-технические методы исследования (0) -- [ c.466 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение церия из смеси редких земель

Определение церия в смеси редких земель

Отделение скандия от церия и редких земель

Церий

Церит



© 2024 chem21.info Реклама на сайте