Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористость катализаторов оксида углерода

    В настоящее время проблема защиты воздушного бассейна от загрязнений становится одной из важных и сложных задач, стоящих перед человечеством. Особое внимание этой проблеме уделяется в нашей стране. В директивах XXVI съезда КПСС предусматривается ог-ромная работа по охране окружающей среды. Решение этой проблемы осуществляется по трем направлениям обезвреживание выбросов, изменение состава топлива и разработка новых методов преобразования энергии. На первом этапе в основном использовался и пока еще используется первый путь. Тепловые электростанции оборудуются высокими трубами для рассеивания выбросов в более высокие слои атмосферы, золоуловителями для улавливания золы из продуктов горения, фильтрами и адсорберами для сорбции некоторых газов и т. п. Например, оксиды серы можно сорбировать растворами, имеющими основную реакцию, монооксид углерода и углеводороды можно дожигать. Для автомобилей предложены дожигатели, которые могут устанавливаться в выхлопных трубах и представляют собой пористую насадку с катализатором, например палладием. На катализаторе происходит окисление значительной части вредных выбросов автомобиля. Однако обезвреживание продуктов горения весьма дорого и в будущем, по-видимому, будут применяться другие методы защиты воздушного бассейна. [c.355]


    Одной из серьезных проблем в области очистки газовых выбросов является удаление оксида углерода. На практике оксид углерода дожигается до диоксида с использованием различных специальных катализаторов, в том числе на основе каталитических добавок, нанесенных на пористые носители АК-62, АК-64У. [c.556]

    Анодный процесс сводится к электрохимической реакции образования высшего оксида никеля, который на второй стадии вступает в химическое взаимодействие с адсорбированными органическими соединениями. Таким образом, высший оксид в-анодной реакции выполняет роль катализатора — переносчика электронов [87]. Для изготовления активных электродов из оксидов никеля применяют технологию, разработанную для производства положительных безламельных пластин щелочных аккумуляторов. Электроды получают путем прессования смеси карбонильного никеля и карбоната аммония с последующим спеканием при температуре 920—950 °С. В результате разложения карбоната аммония и удаления из основы диоксида углерода получается пористая заготовка (объемная пористость 70%), которая пропитывается раствором нитрата никеля и потом обрабатывается раствором щелочи. Полученный таким образом металлокерамический электрод, пропитанный гидроксидом никеля, подвергается электролитическому формированию,,. [c.51]

    Этот метод применим также к синтезу смешанных оксидов, сульфидов и оксисульфидов. Областями внедрения являются процессы прямого ожижения угля, синтез на основе оксида углерода и водорода и каталитическая конверсия оксида углерода. Доказано, что в процессе прямого ожижения носители с заданной пористостью очень способствуют увеличению пробега катализатора [77]. Широкие поры необходимы для предотвращения закупоривания неорганическим материалом, отлагающимся на поверхности, тогда как небольшие поры обеспечива- [c.60]

    В термокаталитических реакторах успешно окисляются оксид углерода, водород, углеводороды, аммиак, фенолы, альдегиды, кетоны, пары смол, канцерогенные и другие соединения с образованием СОг, НгО, N2. Степень окисления этих веществ может быть очень высокой — до 98—99,97о- Катализаторы используют в виде сеток, листов и таблеток различной формы. Для увеличения удельной поверхности катализаторов и экономии дорогих металлов применяют керамические пористые носители из окси- [c.11]


    В нач. 20 в. предполагалось создать Т. э. для прямого превращения энергии прир. видов топлива-прир. газа, нефтепродуктов или оксида углерода, получаемого газификацией углей (отсюда назв.),-в электрическую как альтернативу тепловым машинам, кпд к-рых ограничен вторым началом термодинамики. Задача оказалась трудной из-за инертности этих топлив к электрохим. р-циям. В 60-х гг. 20 в. были разработаны водородно-кислородные Т. э. с использованием щелочного р-ра электролита (обычно 30-40%-ный водный р-р КОН) и в качестве топлива-водорода высокой степени чистоты. Эти Т. э. (рабочая т-ра от 20 до 100 °С, в отдельных вариантах до 160 °С) предназначены для космич. кораблей, автономных устройств связи и т.д. В них используются т. наз. газо диффузионные электроды-пористые никелевые или угольные электроды с нанесеннььми катализаторами (дисперсные Р1, №, Ag и т.д.), к-рые, с одной стороны, контактируют с электролитом, с другой - с реагирующим газом. На отрицат. электроде водород электрохимически окисляется (Нз 4- 20Н -> 2Н20 + 2е ), на положительном-восстанавливается кислород (1/2О2 + 4-НдО-Н 2е - 20Н ). Образующаяся вода поступает в электролит (что требует рециркуляции электролита и удаления воды с помощью внеш. устройств) либо испаряется с пов-сти электродов (при рабочих т-рах выше 60 С). Эдс кислородно-водородной цепи при давлении газов 0,1 МПа (1 атм) и 25 °С равна 1,229 В, а при 100 °С равна 1,162 В напряжение разомкнутой цепи около 1,1 В номинальная плотн. тока 500-2000 А/м (катализатор-скелетный №), 4-8 кА/м (Р1). Срок службы водородно-кислородных элементов до 10 тыс. часов. [c.610]

    Э. Теллером разработал (1938) метод определения удельной поверхности порошкообразных и пористых ТВ. тел, основанный на теории полимолекулярной физической адсорбции газов (метод БЭТ). Изучал совм. с Брунауэром механизм промотирования катализаторов, установил (1940) диспропорционирование состава поверхностных слоев под влиянием сорбции промоторов. Посредством изотопных методов изучил (1950) механизм начальных стадий синтеза углеводородов на основе оксида углерода и водорода. Независимо от [c.523]

    Осн. работы относятся к химии поверхностных соед. и гетерогенному катализу. Выдвинул (1933) одну из первых теорий поверхностных промежуточных соед. в катализе. Наряду с X. С. Тэйлором установил (1935) определяющую роль энергии активации в возникновении разных типов хемосорбции. Совм. с С. Брунауэром и Э. Теллером разработал (1938) метод определения удельной поверхности порошкообразных и пористых ТВ. тел, основанный на теории полимолекулярной физической адсорбции газов (метод БЭТ). Изучал совм. с Брунауэром механизм промотирования катализаторов, установил (1940) диспропорционирование состава поверхностных слоев под влиянием сорбции промоторов. Посредством изотопных методов изучил (1950) механизм начальных стадий синтеза углеводородов на основе оксида углерода и водорода. Независимо от Э. В. Брицке и А. Ф. Капустинского открыл явление термической диффузии в р-циях восстановления оксида железа (II) водородом. [c.523]

    Для окисления монооксида углерода и восстановления оксидов азота в автомобилях предложены катализаторы, которые могут устанавливаться в выхлопных трубах и представляют собой пористую насадку с катализатором, например, платиной или палладием и родием. Газовые выбросы можно также очищать методом адсорбции (см. 6.3) на активированном угле, силикагелях и цеолитах (см. 12.4) и других адсорбентах. [c.484]

    Теоретически равновесный выход аммиака увеличивается с уменьшением температуры, но при этом падает скорость реакции (рис. 10.6). Синтез аммиака вследствие высокой прочности связи атомов азота даже при высоких температурах (до 800°С) протекает крайне медленно. В промышленных условиях для ускорения процесса синтез аммиака проводят при 450—520°С в присутствии катализатора. Из существующих катализаторов наибольшую активность проявляют контактные массы на основе пористого железа с добавлением промоторов AI2O3, К2О, СаО, MgO и Si02. Но под действием высокой температуры и каталитических ядов железный катализатор быстро теряет свою активность. Соединения серы отравляют катализатор необратимо, кислород, водяной пар и оксид углерода — обратимо. Поэтому для увеличения срока службы катализатора азотоводородную смесь перед синтезом тщательно очищают от каталитических ядов. Срок службы железного катализатора составляет два года. [c.200]

    ПортландцвьЕнтшй клинкер и технологический газ чаще всего получают во вращающихся печах. Добавками служат различные материалы, содержащие углерод, оксиды алюминия, кремния и железа, которые часто являются попутными продуктами химических и иных производств (кокс, магнетит, П1фитные огарки, золы, глины). Кальцинированный фосфогипс и добавки измельчают, смешивают в определенных пропорциях и обжигают. Готовый клинкер охлаждают воздухом и измельчают. Газ из П0ЧИ, состоящий из 5 , , 4 > и водяного пара, очищают от шиш в циклонах, электрофильтрах и скруббере. Влажный газ после мокрых электрофильтров осушают и подают в контактный аппарат о ванадиевым катализатором, а затем в абсорбционное отделение, где завершается цикл производства серной кислоты. На установке производительностью 1000 т/сут расходные коэффициенты на 1 т серной кислоты составляют Са 01 - 1,611 т глина - 0,144 т песок - 0,080 т кокс - 0,115 т вода - 85 м электроэнергия - 140 кВт/ч топливо - 63 МДж /Вэ/. Клинкерные щ-нералы образуются при температуре на 50 - 70 °С ниже, чем обычно, что объясняется к аталитическим влиянием восстановительной среди и наличием соединений фосфора и фтора. Клинкер отличается пористой структурой и легче размалывается /ВО/. [c.22]


    Каталитическая стабильность. Одной из причин потери каталитической активности является отложение углерода на катализаторе. Факторы, влияющие на отложение углерода, особенно в слз чае применения такого технологического сырья, как тяжелое масло процесса Коалкон, включают соответствующее соотношение между гидрогенизационной и крекирующей активностями (см. разд. 7.3 и 7.5), контроль над размером и распределением пор, необходимый для оптимизации времени пребывания больших молекул, и увеличение контакта между катализатором, водородом и жидким сырьем. Необходимое соотношение между гидрогенизационной и крекирующей активностями может быть установлено изменением относительных количеств компонентов оксида переходного металла и твердых кислот. Контроль параметров пористой структуры уже обсуждался в связи с каталитической активностью и селективностью. [c.180]


Смотреть страницы где упоминается термин Пористость катализаторов оксида углерода: [c.12]   
Справочник азотчика Издание 2 (1986) -- [ c.140 , c.141 , c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатор оксида углерода

Катализаторы как пористые

Катализаторы пористость

Углерода оксиды



© 2025 chem21.info Реклама на сайте