Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ниобии определение колориметрическое

    Галогенидные и роданидные комплексы. Колориметрическое определение висмута основано на переведении иона висмута в комплексную висмут-йодистоводородную кислоту, окрашенную в желтый цвет. Аналогичное соединение образует сурьма. Известны также окрашенные галогенидные комплексы других металлов (железа, меди, кобальта и т. д.). Очень хорошо известны и часто применяются в колориметрии роданидные комплексы. Роданид-ионы образуют в кислой среде окрашенные комплексы с ионами железа (И1), кобальта (И), молибдена (V), вольфрама (V), ниобия (V), висмута (И1) и др. Все эти комплексы характеризуются достаточно интенсивной окраской. [c.213]


    Метод колориметрического титрования очень прост, выполняется быстро и широко применяется в производственных лабораториях для определения алюминия, молибдена, ниобия, нитритов и др. Точность метода при некотором навыке вполне удовлетворительна (2—5 отн.%). [c.30]

    Вследствие значительной диссоциации роданидного комплекса ниобия при колориметрическом определении ниобия в виде роданида необходимо экстрагирование его или применение неводных растворителей. Для экстрагирования применяют диэтиловый эфир. [c.201]

    Ниобий. Единственным колориметрическим методом определения ниобия, который может быть сделан точным, является метод с перекисью водорода, в котором измеряется светопоглощение в ультрафиолетовом свете для этого надо вводить поправку на светопоглощение комплекса титана с перекисью водорода. Метод этот мало чувствителен. [c.745]

    Непосредственное колориметрическое определение ниобия [c.688]

    Алимарин И. П. и Подвальная Р. Л. Колориметрическое определение малых количеств ( ниобия в виде роданового комплекса. ЖАХ, 1946, I, вып. 1, с. 30—46. Резюме на англ. яз. Библ. 17 назв. 2909 [c.123]

    Колориметрические методы определения ниобия, титана и циркония в жаропрочных сплавах. [c.273]

    Карякин Ю. В. и Тележникова П. М. Взаимодействие ниобия и тантала с полифенолами. [Открытие и колориметрическое определение ниобия и тантала]. ЖПХ, 1946, [c.164]

    Колориметрическое определение ниобия. Определяют ниобий колориметрически в виде роданидного комплекса. Полученный [c.353]

    Определение. Дм определения Т. применяаот те же методы, что и для ниобия. Главная трудность-сходство хим. св-в Nb и Та, проявление эффекта потери индивидуальности Т. в присут. Nb и Ti. Для разделения этих элементов применяют осаждение Т. из р-ров таннином, экстракцию, напр, кетонами из р-ров в смеси к-т H 1-HF, купфероном и др., хроматографич. методы. Количественно Т. определяют колориметрически (с использованием пирогаллола и др.), гравиметрически, люминесцентным, рентгеиоспект-ральными, флуоресцентными, спектральными и нейтронно-активационным методами. [c.495]

    Колориметрическое определение ниобия с роданидом. В сильнокислой среде ниобий образует с роданид-ионами комплексы желтого цвета, которые можно экстрагировать эфирами и кетонами. Реакцию эту можно приводить и в тартратной среде. [c.929]

    В литературе по аналитической химии ниобия рассматриваются методы его определения в минералах, рудах, концентратах, металлах, сплавах, сталях и других материалах. Для определения больших количеств ниобия предлагаются весовые и объемные методы, а для малых — спектральные, рентгеноспектральные, полярографические, колориметрические, спектрофотометрические и методы, основанные на измерении радиоактивности [1]. [c.270]

    Проверка метода И. П. Алимарина и Р. Д. Подвальной дала хорошие результаты, и его можно рекомендовать для колориметрического определения ниобия. [c.203]


    Осаждение тан н ином. Тантал из слабокислых растворов осаждается таннином легче, чем ниобий. Комплекс тантала с таннином (светло-желтого цвета) осаждается первым, осадок титанового комплекса (красного цвета) — вторым и комплекс ниобия с таннином (ярко-красного цвета) —третьим. Танниновый метод применяют для разделения тантала и ниобия. В ходе анализа раствора, содержащих эти элементы, ниобий, частично соосадив-шийся с танталом, определяют колориметрическим методом и вносят поправку в результаты определения тантала. Танниновый метод применяют также и для осаждения и определения суммарного количества тантала и ниобия. В слабокислой оксалатной среде в присутствии комплексона III ниобий и тантал количественно осаждают таннином и отделяют от многих сопутствующих элементов. [c.155]

    Основными условиями применения в фотометрическом анализе комплексов титана, ванадия, ниобия и тантала с перекисью водорода является силь номи слая среда и достаточный избыток перекиси водорода. Хлориды и сульфаты мало влияют на оптические свойства этих комплексов, хотя по ряду данных они присоединяются к окрашенным комплексам Ме—Н2О2, образуя смешанные комплексы, иногда анионного типа. С другой стороны, комплексы титана и ванадия с Н2О2 вследствие своей невысокой прочности сравнительно легко подвергаются действию различных анионов, связывающих центральный ион. Например, щавелевая кислота резко ослабляет окраску или совсем обесцвечивает раствор перекисноводородного комплекса титана. При этом образуется смешанный комплекс, причем полоса поглощения постепенно сдвигается в ультрафиолетовую область спектра. Известно, что титан образует с фтором более прочный комплекс по сравнению с ванадием. Поэтому в смеси перекисных соединений этих элементов, при действии умеренных количеств фторидо В, можно обесцветить комплексное соединение титана, тогда как окрашенное соединение ванадия не разрушается. Это является основанием одного из методов колориметрического определения ванадия и титана при совместном присутствии. [c.254]

    Окрашенные комплексы с анионами сильных кислот. Значительная группа колориметрических определений основана на образовании ионами металлов окрашенных комплексов с анионами сильных кислот 5СЫ , С1 , Р. Так, широко применяются роданидные комплексы при определении железа, кобальта, молибдена, ниобия. Анионы сильных кислот даже при очень высокой концентрации Н+ не связыв аются ионами водорода в молекулу кислоты и концентрация аниона в растворе не изменяется. Вследствие этого повышение кислотности не приводит к разрушению окрашенного комплекса. Комплексы металлов с анионами сильных кислот, например [Ре(5СМ)4] , [В114Г, являются малопрочными комплексами и заметно диссоциируют с образованием в растворе свободных ионов определяемого металла. При уменьшении кислотности, т. е. при увеличении pH раствора, эти свободные ионы металла образуют с гидроксильными ионами малорастворимые гидроокиси или основные соли. Это приводит к дальнейшей диссоциации окрашенного комплекса, в результате чего ком- [c.21]

    Метод колориметрического титрования особенно удобен в тех случаях, когда окраска развивается быстро. Если реакция переведения определяемого иона в окрашенное соединение требует длительного времени или сложной обработки (кипячение, фильтрование и т.п.), но сам окрашенный раствор устойчив во времени, поступают следующим образом известное количество определяемого вещества заранее переводят в окрашенное соединение и затем разбавляют до определенного объема и получают, таким образом, окрашенный стандартный раствор титрование проводят этим окрашенным стандартным раствором до уравнивания окрасок. Например, так можно определять марганец, применяя для титрования стандартный раствор КМПО4. Метод колориметрического титрования очень прост, выполняется быстро и широко применяется в производственных лабораториях для определения алюминия, молибдена, ниобия, нитритов и др. Точность метода при некотором навыке вполне удовлетворительна (2—5% относительных). Метод колориметрического титрования особенно удобен при единичных анализах, так как требует небольшого расхода реактивов и времени. [c.30]

    Окрашенные комплексы с анионами сильных кислот. Значительная группа колориметрических определений основана на образовании ионами металлов окрашенных комплексов с анионами сильных кислот S N , С1, 1 . Так, широко применяются роданидные комплексы при определении железа, кобальта, молибдена, ниобия. Анионы сильных кислот даже при очень высокой концентрации Н не связываются ионами водорода в молекулу кислоты и концентрация аниона в растворе не изменяется. Вследствие этого повышение кислотности не приводит к разрушению окрашенного комплекса. Комплексы металлов с анионами сильных кислот, например [Fe(S N)4] , [Bil4l, малопрочны и заметно диссоциируют с образованием в растворе свободных ионов определяемого металла. При [c.22]

    На возможность колориметрического определения ниобия по его реакции с роданидом в солянокислых растворах, содержащих хлорид олова (II) и винную кислоту, впервые указали Л. Н. Моньякова и П. Ф. Федоров По их наблюдениям образующееся в этих условиях соединение экстрагируется эфиром, и содержание ниобия можно определить по интенсивности желтой окраски эфирного слоя. Механизм этой реакции и влияние на нее различных факторов, подробно изученные И. П. Алимариным и Р. Л. Подвальной , рассмотрены ниже. Титан также дает окрашенный в желтый цвет роданидный комплекс, но чувствительность реакции на титан во много раз меньше, чем на ниобий, и при соотношении ] Ь Т1 = 1 30 еще возможно достаточно точное определение ниобия при условии, если концентрация Т10г в анализируемом растворе не превышает 0,3 мг в 10 мл. Тантал в условиях определения ниобия дает с роданид-ионами бесцветный комплекс. Определению ниобия мешают молибден, фольфрам, уран, ванадий, железо, хром, кобальт, медь, золото и платина, образующие в этих условиях окрашенные соединения с роданидом. При экстрагировании эфиром устраняется влияние хрома, урана, железа и меди, которые остаются в водном слое. Совместно с ниобием эфиром извлекаются окрашенные роданиды молибдена, вольфрама, титана, кобальта и йлатины. Соединения золота, селена и теллура восстанавли-. ваются до элементарного состояния и покрывают стенки сосуда, что мешает наблюдению окраски ниобиевого комплекса. [c.689]


    Для уменьшения диссоциации окрашенных роданидных ком плексов часто применяются неводные растворители. Синий роданидный комплекс кобальта и желтый роданидный комплекс ниобия настолько диссоциируют в водных растворах, что колориметрическое их определение в обычных условиях нецелесообразно. Неводные растворители не просто уменьшают степень диссоциации роданидных комплексов, т. е. не только увеличивают степень связывания металла в окрашенный комплекс. Уменьшаются также константы всех ступеней диссоциации. Поэтому при том же общем избытке реактива все равновесия сдвигаются в сторону образования комплексов с большим числам координированных роданид-ионов обычно в ацетоне или при экстракции образуются тетра- и гексародани-ды. Молярные коэффициенты оветопоглощения этих комплеисов значительно выше. Поэтому чувствительность определения, например, ниобия увеличивается приблизительно в 2 раза, а железа — даже более чем на один порядок. Наконец, при образовании координационно-насыщенных комплексов в неводной среде мало влияют колебания концентрации реактива. [c.248]

    Для определения ниобия выпаривают фильтрат с серной кислотой до полного удаления фтора и по охлаждении разбавляют водой. Из полученного раствора осаждают ниобий небольшим избытком раствора аммиака при кипячении. Осадок отфильтровывают, промывают горячим 2%-ным раствором нитрата аммония и прокаливают. Затем прибавляют твердый карбонат аммония, закрывают тигель, осторожно нагревают, после чего прокаливают щ)и 1000—1200° С и взвешивают. Вводят поправку на оставшееся с ниобием количество тантала, для чего из массы осадка. ниобия вычитают по 0,002 г на каждый миллиДитр кислого раствора А и по 0,00091 г на каждый миллилитр раствора Б (промывные воды). Содержание тантала вычисляют по разности, если известна масса смеси окислов, ИЛИ же определяют непосредственно, так же как ниобий, причем к массе осадка тантала прибавляют величину, равную содержанию TagOs в осадке ниобия. В каждой окиси определяют содержание титана колориметрическим способом. [c.684]

    Особого внимания заслуживают работы по разделению ниобия и тантала и отделению их от посторонних элементов экстрагиройанием органическими растворителями непосредственно из растворов, без использования хроматографии . Этот процесс изучался главным образом применительно к разделению ниобия и тантала, однако он мощет быть весьма интересен и для отделения ниобия и тантала от титана, особенно при применении колориметрического метода определения тантала с пирогаллолом (стр. 691). Этот метод приобрел большое практическое значение. В условиях колориметрического определения тантала чувствительность реакции пирогаллола с титаном почти в 5 раз выше, чем с танталом. В связи с этим погрешность анализа в значительной мере зависит от степени очистки окислов ниобия и тантала от титана, а между тем, как уже было указано, при применении обычно принятых методов эта операция, помимо ее продолжительности, связана с известными потерями ниобия и тантала. [c.685]

    Для определения ииобия и тантала применяют, в зависимости от их содержания в пробе, весовые или колориметрические (фотометрические, спектрофотометрические) методы. Объемные методы, и в частности окислительно-аосстановительньге, не имеют практического значения в связи с неблагоприятными в этом отношения химическими свойствами ниобия и тантала (с.м. выше раздел Электрохимичеокие свойства ). [c.163]

    Применение пирогаллола для колориметрического определения тантала в кислой среде и ниобия в поблочной среде впервые было предложено М. С. Платоновым, Н. Ф. Кривошлыковым и А. А. Маракаевым . Основанный на реакции с пирогаллолом колориметрический метод определения тантала получил большое практическое значение. Определение выполняют следующим способом 2. Прокалённые окислы ниобия и тантала в количестве 0,02 з сплавляют в фарфоровом тигле с 6 г бисульфата калия. Плав растворяют в 70 мл 4%-ного раствора оксалата аммония при нагревании. Ползгченный раствор разбавляют в мерной колбе до 100 мл водой (pH раствора должен находиться в пределах 1—2). К 10 мл раствора ч прибавляют 1,2 г пирогаллола и измеряют светопоглощение раствора при длине волны 436 ммк. Нулевым раствором служит анализируемый раствор, в который не введен пирогаллол. Содержание тантала вычисляют по калибровочной кривой. [c.691]

    Реакция образования надниобиевой кислоты используется в аналитичеокой химии для колориметрического определения ниобия. [c.143]

    Ниобий входит также во внешнюю сферу некоторых гетеро-поликислот, например фосфорномолибденовой или силикомолиб-деновой, что необходимо учитывать при колориметрическом определении кремния илц фосфора при помощи этих соединений в присутствии ниобия. Как известно, это определение можно проводить как по желтой, так и по синей окраске комплексного соединения, т. е. не восстанавливая его или восстанавливая хлоридом олова. Как показали наши исследования влияние ниобия сказывается в обоих случаях при повышенных содержаниях ниобия (в наших опытах около 1 мг при таком же содержании кремния) желтая окраска полностью исчезает, а синяя сперва несколько усиливается, а затем, при содержании ниобия 0,6 лг и 1 дг кремния, также исчезает. Интенсивность желтой р синей окраски сильно зависит от концентрации кислоты. Все это указывает на то, что при определенных условиях образуется гетерополисоединение такого же типа, как описанные выше для ванадия. [c.144]

    Фильтрат и промывную жидкость после отделения кремния помещают в мерную колбу -емкостью 100—2о0 мл, доводят водой до метки, перемешивают и быстро отбирают пробы для определения ниобия фотоколориметри-ческим методом с арсеназо I [4]. Из основного раствора также быстро отбирают аликвотную часть в мерную колбу емкостью 100 мл, приливают 20%-ную винную кислоту (10 мл на 100 мл раств Ора) я определяют молибден колориметрическим методо.м роданидом аммония. [c.92]

    Роданидные комплексы. Экстрагирование роданидных комплексов железа, молибдена, кобальта и некоторых других металлов хорошо известно. В качестве растворителей применяют чаще всего диэтиловый эфир, амилацетат, амиловый спирт. И. П. Алимарин и Р. Л. Подвальная применили для определения ниобия экстрагирование его окрашенного роданидного комплекса эфиром. Известно также и, повидимому, может быть расширено применение экстрагирования для более сложных роданидных комплексов, как, например, тройного комплекса, в состав которого входят медь, роданид и пиридин (СбНзЫ, кратко обозначаемый Ру). Комплекс состава [СиРу2](5СЫ)2 хорошо экстрагируется хлороформом и применяется для колориметрического определения как меди, так и иона родана .  [c.83]

    Для колориметрического определения ниобия и тантала в различных объектах применялись арсеназо, 1-(2-пиридилазоре-зорцин), люмогаллион, антраценхромфиолетовый Б кислотный хромфиолетовый К, ксиленоловый оранжевый и др. [90—131]. [c.10]

    Назаренко В. А., Шварцбурд Л. Е. и Сойфер-ман И. А. Колориметрическое определение олова в [вольфрамовых, ниобий-тантало-вых, сульфидных и др.] рудах [с применением дитиола]. Зав. лаб., 1949, 15, № 4, с. 387—394. 4897 [c.191]

    Платонов М. С. и Кривошлыков Н. Ф. Открытие и колориметрическое определение ниобия и тантала. Тр. Всес. конференции по аналит. химии, 1943, 2, с. 359—370. Библ. 17 назв. 3139 [c.200]

    Чувствительный колориметрический метод определения ниобия основан на появлении желтой окраски при добавлении к кислому ниобийсодержащему раствору растворов тиоцианата калия и хлористого олова. Далее можно либо экстрагировать окрашенное соединение эфиром, либо, добавив ацетон, измерить поглощение в водном растворе максимум поглощения при 386 нм. [c.181]

    Впервые колориметрическое определение ниобия роданидным методом предложили Л. Н. Моньякова и П. Ф. Федорова, см. Бюллетень отдела изобретений Госплана при СНК СССР, 41 (1942). Мы приводим методику, разработанную И. П. Алимариным и Р. Л. Подвальной. [c.201]

    Колориметрически определить ниобий легче, чем тантал. Шаиболей характерная цветная реакция ниобия — образование желтой окраски при действии перекиси водорода в сильно сернокислом растворе 2. К сожалению, эта реакция не очень чувствительна. Окраска, образуемая титаном в этих условиях, ильно ослабляется при добавлении концентрированной фосфор- ной кислоты (достаточно довести концентрацию последней до 40—50% по объему), а окраска, образованная ниобием, сохраняется. Тантал не дает окраски даже в отсутствие фосфорной кислоты. Наименьшее количество ниобия, которое можно открыть визуально, равно приблизительно 0,02 мг, если 0,5 мл анализируемого раствора (после сплавления с едким кали) обрабатывают 0,25 мл 3%-ной перекиси водорода и затем 5 мл концентрированной серной кислоты (наблюдение в колориметрической пробирке, размером 18 Х 150 мм). Очень бледная желтая окраска остается после добавления 5 мл фосфорной кислоты. В тех же условиях (в присутствии фосфорной кислоты) 0,5 мг титана образует очень бледную желтую окраску, эквивалентную окраске 0,02—0,04 мг ниобия. Однако можно вести определение и при ббльших количествах титана, если влияние последнего компенсировать, добавляя такое же количество титана к стан- [c.362]


Смотреть страницы где упоминается термин Ниобии определение колориметрическое: [c.669]    [c.680]    [c.692]    [c.774]    [c.271]    [c.63]    [c.93]    [c.182]   
Физико-химические методы анализа Издание 2 (1971) -- [ c.364 ]




ПОИСК





Смотрите так же термины и статьи:

Колориметрическое определение

Ниобий определение



© 2025 chem21.info Реклама на сайте