Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения окраска

    Растворы солей хрома (III) обычно имеют сине-фиолетовым цвет, но при нагревания становятся зелеными, а спустя некоторое время после охлаждения снова приобретают прежнюю окраску. Это изменение окраски объясняется образованием изомерных гидратов солей, представляющих собой комплексные соединения, в которых все или часть молекул воды координационно связаны во внутренней сфере комплекса. В некоторых случаях такие гидраты удалось выделить в твердом виде. Так, кристаллогидрат хлорида хрома (JII) r ls- HjO известен в трех изомерных формах в виде сине-фиолетовых, темно-зеленых н светло-зеленых кристаллов одинакового состава. Строение тих изомеров можно установить на основании различного отношения их свежеприготовленных растворов к нитрату серебра. При действии последнего на раствор сине-фиолетового [c.655]


    Метод основан на образовании комплексного соединения ионов меди с аммиаком, обладающего интенсивной сине-фиолетовой окраской. [c.68]

    Окраска комплексных соединений переходных металлов объясняет известный фокус с письмом невидимыми чернилами, приготовленными из СоС12. Если написать что-либо на бумаге бледно-розовым раствором СоС12, текст остается практически неразличимым. Но если затем осторожно нагреть над пламенем свечи бумагу, на ней появляется ярко-синяя надпись. После охлаждения надпись постепенно исчезает. Розовая окраска принадлежит октаэдрически гидратированному иону кобальта, Со(Н20) . Нагревание удаляет из него воду и оставляет синий хлоридный комплекс с тетраэдрической геометрией. Безводное соединение гигроскопично это [c.208]

    Однако значительно более ценным свойством дитизона и дитизонатов является чрезвычайно интенсивная окраска их растворов в хлороформе или четыреххлористом углероде. Ничтожные количества металлов порядка 1-10 г (и менее) можно легко обнаружить но окраске дитизонатов. Раствор дитизона в СС1 окрашен в зеленый цвет. При встряхивании этого раствора с водным раствором солей ряда металлов (Си, РЬ и др.) образуются соединения металлов (дитизонаты), растворимые в четыреххлористом углероде растворы окрашены в интенсивно красный или желтый цвет. Различные катионы реагируют с дитизоном при различных pH это позволяет определять некоторые катионы в смесях. Кроме того, для анализа смесей связывают мешающие металлы в комплексные соединения. Содержание металла определяют обычно фотометрированием экстракта. [c.116]

    Выполнение работы. К 3—4 каплям раствора соли кобальта (II) прибавлять по каплям 25%-ный раствор аммиака до выпадения осадка гидроксида кобальта (II) и его дальнейшего растворения вследствие образования комплексного соединения, в котором кобальт имеет координационное число, равное 6. Полученный раствор разлить в две пробирки. В одной из них тщательно перемешать раствор стеклянной палочкой до изменения окраски вследствие окисления полученного комплексного соединения кобальта (II) в комплексное соединение кобальта (III). Почему аммино-комплексный ион Со (II) окисляется кислородом воздуха, тогда как аквакомплекс Со (II) удается окислить лишь пероксидом водорода Во вторую пробирку добавить 2—3 капли 3%-ного раствора пероксида водорода. Объяснить изменение окраски. Затем прилить в обе пробирки по 2—3 каплу раствора сульфида аммония. Объяснить, почему выпадает осадок. [c.218]


    Изучены помехи появляющиеся вследствие присутствия хрома при титровании других металлов, и найдено, что они могут быть легко устранены. Исключительная реакционная инертность хрома оказывается в этом случае выгодной, так как упомянутые другие металлы полностью оттитровываются, пока хром успеет прореагировать с титрантом в количестве, мешающем определению-. Рейли очень метко назвал это кинетическим маскированием . При титровании в щелочном растворе хром может мешать вследствие образования осадка гидроокиси. Однако добавка винной кислоты предотвращает выпадение осадка. Вопросами химического маскирования неоднократно занимался Пршибил [61 (94)]. Продолжительным кипячением (5 мин) с триэтаноламином хром можно перевести в триэтаноламиновый комплекс, окрашенный в темный рубиново-красный цвет. Однако, несмотря на то, что хром маскируется, он мешает, перекрывая переход окраски индикатора в точке эквивалентности, за исключением случаев, когда присутствует в малых количествах. Максимальная концентрация хрома, не вызывающая помех, зависит от применяемого индикатора и еще от возможного сильного разбавления анализируемого раствора в процессе титрования. В качестве одной из возможностей маскирования упоминается длительное кипячение с аскорбиновой кислотой. Раствор приобретает синевато-зеленый цвет, и после добавки аммиака выделения гидроокиси хрома не происходит. Предполагается, что образуется комплексное соединение. Окраска его довольно слабая, и, например, Са, Мп или № можно титровать в аммиачном растворе в присутствии хрома в концентрации до [c.220]

    Группа ванадия и окраска ионов и комплексных соединений [c.441]

    Некоторые ионы, имеющие собственную окраску, также мешают определению титана. Из них чаще всего приходится иметь в виду присутствие трехвалентного железа, особенно в солянокислых растворах. В этом случае образуется окрашенный в желтый цвет хлоридный комплекс железа. При умеренных количествах железа желтую окраску хлоридного комплекса можно устранить прибавлением фосфорной кислоты, которая связывает железо в бесцветное комплексное соединение  [c.258]

    Окислительный потенциал трехвалентного железа при переходе в двухвалентное ( =0,77 й) довольно близок к потенциалу перехода дифениламина Еинд =0,76). Поэтому дифениламин частично окисляется ионами трехвалентного железа. Эта реакция протекает медленно, но тем не менее окраска дифениламина возникает еще до точки эквивалентности, так как при титровании концентрация ионов трехвалентного железа все больше увеличивается. Чтобы избежать этого, к раствору перед титрованием приливают НдРО,. Фосфорная кислота образует с ионами трехвалентного железа комплексное соединение  [c.395]

    Определение магния с эриохром черным Т. Эриохром черный Т образует с магнием при pH 10 красное комплексное соединение. Окраска неустойчива. [c.871]

    Оптимальная область концентраций, определяемая при помощи дитизона, достаточно точно не установлена. Чувствительность метода составляет около 0,01 мкг см- . Дитизон образует с золотом одно из немногих комплексных соединений, окраску которого можно использовать для спектрофотометрического определения. [c.273]

    Комплексное соединение Окраска Комплексное соединение Окраска [c.81]

    Лимонная кислота. Под действием лимонной кислоты ванадаты восстанавливаются в соли диванадила, образующие с избытком реактива интенсивно окрашенные в синий цвет комплексные соединения. Окраска растворов вполне устойчива, а интенсивность ее подчиняется закону Бугера — Бера на широком участке концентраций. [c.468]

    Принцип комплексометрического титрования состоит в следующем. В растворах индикаторы в присутствии ионов металлов образуют неустойчивые окрашенные комплексные соединения, окраска которых отличается от окраски свободных индикаторов. [c.65]

    Однако между металлами главных и побочных подгрупп есть ц существенные различия. Они также связаны с особенностями электронного строения переходных элементов, а именно с тем, что во втором снаружи электронном слое их атомов имеется неполностью занятый электронами -подуровень. Для образования химических связей атомы переходных элементов могут использовать не только внешний электронный слой (как это имеет место у элементов главных подгрупп), но также -электроны и свободные -орбитали предшествующего слоя. Поэтому для переходных элементов значительно более характерна переменная валентность, чем для металлов главных подгрупп. Возможность создания химических связей с участием -электронов и свободных -орбиталей обусловливает и ярко выраженную способность переходных элементов к образованию устойчивых комплексных соединений, С этим же связана, как указывалось на стр. 598, характерная окраска многих соединений переходных элементов, тогда как соединения металлов главных подгрупп в большинстве случаев бесцветны. [c.646]


    Кроме перечисленных групп окрашенных соединений, очень большое значение имеют различные комплексы металлов с органическими реактивами. Некоторые из них упоминались ранее ( 22) при рассмотрении органических реактивов. Хорошо известно окрашенное соединение алюминия с ализарином и др. Комплексные соединения металлов с органическими реактивами характеризуются часто очень интенсивной окраской это дает возможность определять чрезвычайно малые количества металлов. [c.213]

    Рассматриваемый ряд лигандов называется спектрохимическим потому, что сила поля лиганда влияет на цвет комплексного соединения. Окраска вещества зависит от того, с какой длиной волны могут им поглощаться фотоны. Например, комплекс, содержащий один несвязывающий е , может поглощать те фотоны, энергия которых трансформируется в переход электрона из d -орбитали в уорбиталь (для октаэдров) и из у-ор<5итали (рис. 71, III) в -орбиталь (для тетраэдров). При этом энергия кванта света [формула (II.5)] должна быть точно равна параметру расщепления Д, т. е. Av=A. Зная длину волны света (Я= /v), соответствующую окраске комплекса, можно рассчитать для того или иного лиганда A= hfk. [c.201]

    Определению титана (IV) мешают фториды и большие количества фосфатов, образующие с титаном комплексные соединения. Нельзя определять титан в присутствии ванадия, церия и молибдена. Ионы железа(III) в сернокислой и азотнокислой средах мешают мало, а среде соляной кислоты ион РеСи мешает собственной окраской. [c.61]

    Поляризационные представления оказались полезными для объяснения устойчивости, кислотно-основных и окнслительно-вос-сталовнтельных свойств комплексных соединений, но многие другие их свойства остались необъясненными. Так, с позиций электростатической теории все комплексы с координационным числом 4 должны иметь тетраэдрическое строение, поскольку именно такой конфигурации соответствует наименьшее взаимное отталкивание лигандов. В действительности, как мы уже знаем, некоторые по- добные комплексы, например, образованные платиной(И), построены в форме плоского квадрата. Электростатическая теория не в состоянии объяснить особенности реакционной способности комплексных соединений, их магнитные свойства и окраску. Более точное и полное описание свойств и строения комплексных соеди- нений может быть получено только на основе квантовомеханиче- ских представлений о строении атомов и молекул. [c.594]

    Природа связей определяет интенсивность окраски комплексных соединений и их растворимость в органических растворителях. Поскольку металл координационно насыщен и уже не обладает свойствами иона, гидратация невозможна. Из этого следует, что соединения этой группы. крайне плохо растворимы в воде. Ниже приведены примеры органических реаген- [c.13]

    Окрашенные соединения в большинстве случаев являются комплексными. Интенсивность окраски комплексных соединений зависит от их свойств и состава среды. Чтобы получить прочные комп- [c.137]

    Для Со+ наряду с координационным числом 6 характерно также координационное число 4 и тетраэдрическое окружение Со+ лигандами при к. ч. = 4 комплексные соединения Со+ имеют ярко-синйю окраску. Б тетраэдрическом поле лигандов энергия расщепления -орбиталей значительно меньше, чем в октаэдрическом, полоса поглощения иона Со+ сдвигается в сторону более длинных волн, окраска переходит из розовой в синюю. [c.563]

    Выполнение работы. В мерную колбу вместимостью 100—200 мл получить у преподавателя точно отмеренный объем исследуемого раствора сульфата железа (И). Добавить в колбу 10 мл 4 и. раствора серной кислоты и до половины колбы дистиллированной воды. Целесообразно также прибавить 5—10 мл раствора фосфорной кислоты. Последняя с ионами Ре +, образующимися в процессе титрования, дает бесцветное комплексное соединение, благодаря чему в конце титрования окраска переходит из бесцветной в розовую. При отсутствии фосфорной кислоты окраска раствора в конечной точке титрования изменяется от желтой к розовой, что несколько затрудняет наблюдение розовой окраски. [c.106]

    Расщепление Д может быть определено также экспериментально по спектрам поглощения комплексных соединений. Спектр поглощения в видимой и ультрафиолетовой областях связан с переходами электронов с одних энергетических уровней на другие. Вещество поглощает те кванты света, энергия которых равна энергии соответствующих электронных переходов. Спектр поглощения (а следовательно, и окраска) большинства комплексов -элементов обусловлен электронными переходами с одной -орбитали на другую с более высокой энергией. Так, например, аква-комплекс [Т1(Н20)аР+ имеет максимум поглощения при волновом числе 20000 см что обусловливает фиалетовую окраску данного комплекса. Ион Т1 + имеет толь- [c.47]

    Открытие технеция при помощи тиомочевины [191]. Очень чувствительной реакцией на технеций является реакция образования комплексного соединения технеция (VII) с тиомочевиной. Реакцию проводят в азотнокислой среде (если присутствуют другие валентные формы, необходимо окислить их 2 М HNO3), в которой ион ТсО дает с тиомочевиной при нагревании интенсивно окрашенное в красный цвет комплексное соединение. Окраска устойчива в течение продолжительного времени. Re, Мп и Ru не мешают определению. Открываемый минимум — 0,04 мкг Тс. [c.38]

    Для этих реакций оксид серебра(I) обычно применяют в форме его бесцветного (аствора а водном аммиаке такой раствор содержит комплексное соединение [Ад (МНз)г]ОН, Оксид меди(Н) берут в виде щелочного раствора ого комплексного соединения с винной кислотой (жидкость Фелинга —сннир раствор) окснд меди(1) выпадает в виде красного осадка, при этом синяя окраска реактива исчезает. [c.485]

    Для практического определения железа используются два из этих соединений, образующиеся в кислой и щелочной средах. При рН>12 комплексное соединение разрушается с выделением осадка гидроксида железа. Железо (И) не дает с сульфосалициловой кислотой интенсивной окраски, но вследствие легкой окисляемости Ре(П) р Ре(1П) в щелочной среде можно определять сумму Ре(П) и Ре(1И). Комплексные соединения железа с сульфосалициловой кислотой устойчивее ро-данидных комплексов железа, что позволяет применять рассматриваемый метод для определения железа в присутствии фосфатов, ацетатов и боратов. [c.57]

    При нагревании раствора идет обратная реакция, и окраска исчезает. При действии N0 на губчатое железо при высоком давлении ббразуется feтpaнитpил железа Ре(N0)4 (черное кристаллическое Вещество). Известны нитрилы Ки и Сг. Другие комплексные соединения, содержащие N0, рассмотрены в разделах, посвященных химии /-элементов. [c.406]

    Обычно при титровании ионов металлов ЭДТА при pH 10 в конечной точке титрования фиолетовый цвет раствора (наложение синего цвета индикатора на красный цвет комплексного соединения) изменяется на чисто синий (цвет индикатора комплексы металлов кальция, магния, цинка и др. с ЭДТА бесцветны). Эрио-хромов 1Й черный Т обладает очень интенсивной окраской, поэтому его готовят, смешивая с сухим хлорицом натрия в отношениях от 1 100 до 1 400. Для каждого титрования берут шпателем 20-30 мг смеси. [c.117]

    Определение меди. Содержание меди определяют фотометрическим методом, основанным на измерении интенсивности окраски аммиачного комплексного соединения ["Си (ЫНз)4] имеющего максимум поглощения в области длин волн л = б20нм. [c.232]

    Из уравнений (11.39) и (11.40) следует, что в присутствии ком-плексообразователя уменьшается концентрация катионов, способных адсорбироваться на катионите, возрастает концентрация неадсорбиру-ющихся комплексных соединений (при постоянном б овщ) и в результате увеличивается скорость перс-мещения ионов данного вещества но колонке. При протекании вымывающего раствора через колонку происходит многократная десорбция и сорбция разделяемых иоиов, причем катионы меди, образующие более устойчивые комплексные соединения, перемещаются вдоль слоя смолы с большей скоростью, чем ионы кобальта. В результате в колонке формируются различные по окраске зоны — для меди голубая, для кобальта оранжевая первым из колонки выходит раствор, содержащий комплексные соединения меди, затем — кобальта (рис. 15). [c.54]

    Во время титрования в растворе появляется все больше трехвалентного железа, которое в солянокислой среде окрашено в желтый цвет поэтому в точке эквивалентности наблюдается переход окраски от желтой к розовой. Этот переход не очень хорошо воспринимается нашим глазом. Для увеличения резкости перехода окраски к раствору перед титрованием прибавляют немного фосфорно11 кислоты, которая образует с ионами трехвалентного железа бесцветное комплексное соединение  [c.381]

    Эта стадия проводится, как правило, при комнатной температуре и интенсивном перемешивании. В бояьшигетвс случаев реакция сопровождается окрашиванием раствора, что может служить первичным признаком образования комплексного соединения. Согласно теории кристаллического поля [16] в металлах, обладающих незаполненным <1-подуровнем, при затрате некоторой энергии электрон на одной из с1 -орбиталей может возбуждаться и переходить на ( -орбиталь. При обратном переходе из возбужденного в нормальное состояние происходит испускание света с длиной волны, соответствующей указанной энергии возбуждения, что и обуславливает окраску комплекса. [c.61]

    Синтез комплексов замещенных нитрилов с хлоридами с1-элементов сопровождается изменением окраски реакциогиюй смеси, что позволяет в первом приближении судить об образовании комплексного соединения. Каждому комплексу соответствует определенный цвет, не совпадающий с цветом исходной соли металла(табл. 2). [c.61]

    Моносульфосалицилат железа имеет максимум поглощения при 510 нм и молярный коэффициент погашения 1,8-10 . При-увеличении pH до 4—8 возникает красно-бурая окраска раствора. Предполагают, что при этом образуется комплексное соединение 1 2  [c.57]

    В последнее время получены данные об идентичности строения молекул берлинской лазури и турнбулевой сини, которые являются сложными комплексными соединениями. Различие окраски определяется соотношением количества атомов жатеза в различной степени окисления. [c.209]

    Опыт 4. Медные сплавы. На чистую поверхность образца поместить каплю азотной кислоты (пл. 1,4). Через. 1 AiUH на ту же каплю нанести 2—3 капли гидроокиси аммония. Появление синей окраски, присущей комплексному соединению 1Си(ННз)4],(НОз)2, указывает на медный сплав  [c.115]

    На основе теории кристаллического поля удается объяснить не только магнитные свойства комплексных соединений, но и их специфическую окраску. Так, в комплексе [Т1(Н20)б] нон имеет один -электрон (электронная конфигурация д ). В нормальном (невозбужденном) состоянии этот электрон находится на одной из -орбиталей, но при затрате некоторой энергии (Д = 238 кДж/моль) может возбуждаться и переходить на .-орбиталь. Длина волны света, поглощаемого при этом пер>еходе и соответствующего указанной энергии, равна 500 нм это и обусловливает фиолетовую окраску комплекса [Т1(Н20)б] . При тгисом рассмотрении становится понятным, почему комплексы, образованные ионами Си" ", Ag , и как правило, бес- [c.359]


Смотреть страницы где упоминается термин Комплексные соединения окраска: [c.598]    [c.443]    [c.511]    [c.377]    [c.282]    [c.126]   
Учебник общей химии 1963 (0) -- [ c.396 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексные окраска

Окраска



© 2025 chem21.info Реклама на сайте