Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Висмут комплексные

    Зная, что состав полученного соединения выражается эмпирической формулой КЬВ(1з, написать его координационную формулу. Написать уравнения реакций образования иодида висмута, взаимодействия иодида висмута с избытком иодида калия. Написать уравнение электролитической диссоциации полученного комплексного соединения. [c.122]


    Опыт I. Получение комплексного соединения висмута. В пробирку налейте 0,5—1,0 мл раствора нитрата висмута (III), прибавьте по каплям 2 н. раствор иодида калия до выпадения темно-бурого осадка иодида висмута, добавьте несколько капель раствора иодида калия до растворения осадка. [c.75]

    Получение иодида и комплексного тетраиодида висмута. К раствору соли висмута добавлять по каплям раствор иодида калия образуется черный осадок иодида висмута. Последний в избытке иодида калия растворяется с образованием растворимого желто-оранжевого комплексного соединения, в котором висмут проявляет координационное число, равное 4. Составить уравнения реакций. [c.273]

    Приведем пример дробного обнаружения катионов кальция. Лучше всего его обнаружить в виде оксалата. В этом случае алюминий, хром, марганец, железо и другие катионы маскируются в виде комплексных оксалатов, легко растворимых в воде. Некоторые катионы тяжелых металлов — серебро, сурьма, ртуть, свинец, висмут не дают растворимых оксалатных комплексов, но осаждаются металлическим цинком. В раствор переходит ион цинка, не мешающий реакции на кальций и образующий комплексный оксалат. Стронции и барий не мешают реакции, так как осаждаются в виде сульфатов растворимость сульфата кальция 2,5 г/л, что позволяет уверенно обнаружить кальций в фильтрате в виде оксалата кальция после осаждения мешающих катионов. [c.133]

    При титровании этого раствора этилендиаминтетрауксусной кислотой (ЭДТА) происходит уменьшение поглощения, так как при pH 2,4 комплекс с салициловой кислотой менее устойчив по сравнению с комплексом F"e+++ с ЭДТА, т. е. кривая титрования аналогична кривой 1 (см. рис. 105). Аналогичный вид имеет кривая при титровании раствора висмута (III) в присутствии избытка тиомочевины (Ind) этилендиаминтетрауксусной кислотой. Тиомочевина образует с висмутом окрашенное в желтый цвет комплексное соединение менее стойкое, чем комплекс висмута с ЭДТА (BiY ). В качестве примера, когда индикатор образует с титрантом окрашенное соединение, можно привести случай титрования соли церяя (IV) раствором комплексного соединения — о-фенантролина с железом (II). Кривая аналогична кривой 2 (см. рис. 105). [c.267]

    В зависимости от кислотности раствора можно разделить катионы всех металлов на две большие группы. Еще большее дифференцирующее действие проявляют органические реактивы, которые являются слабыми кислотами и в то же время образуют очень прочные комплексы с ионами металлов. В качестве примера на рис. 26.3 приведен дитизоновый спектр , т. е. зависимость экстракции дитизонатов некоторых металлов от pH раствора. Из рисунка видно, что ртуть и серебро экстрагируются тетрахлоридом углерода в виде дитизонатов металлов в очень кислой среде ионы висмута и меди экстрагируются в менее кислой среде с повышением pH экстрагируются ионы цинка, кадмия, индия и других металлов. Таким образом, регулируя только pH раствора, можно в значительной мере провести разделение металлов. Подобным образом можно разделить ионы металлов в виде гидр-оксихинолинатов и других комплексных соединений с органическими реактивами. [c.536]


    Напишите уравнения реакций образования простого и комплексного иодидов висмута в молекулярной и ионной формах. [c.193]

    Обработкой слабо кислых растворов солей висмута комплексными тиоцианатами можно выделить красно-коричневые осадки, образующиеся по реакции [c.529]

    Серебро Из этого электролита осаждается сплав, содержащий 10 - о В) . Комплексная соль висмута готовится путем растворения (В10)М0. в смеси К С НчО, и КОН [c.956]

    Галогенидные и роданидные комплексы. Колориметрическое определение висмута основано на переведении иона висмута в комплексную висмут-йодистоводородную кислоту, окрашенную в желтый цвет. Аналогичное соединение образует сурьма. Известны также окрашенные галогенидные комплексы других металлов (железа, меди, кобальта и т. д.). Очень хорошо известны и часто применяются в колориметрии роданидные комплексы. Роданид-ионы образуют в кислой среде окрашенные комплексы с ионами железа (И1), кобальта (И), молибдена (V), вольфрама (V), ниобия (V), висмута (И1) и др. Все эти комплексы характеризуются достаточно интенсивной окраской. [c.213]

    Для галогенидов сурьмы и висмута ЭГз и ЭГ5 характерно образование комплексных соединений  [c.174]

    Рассчитать равновесное соотношение активностей ионов Ре2+ и В13+ в такой электрохимической системе для стандартных условий и, произведя расчет, выяснить, возможна ли реакция цементации при погружении железа в раствор комплексной соли висмута, содержащей В Вг с константой нестойкости 2-10 ° [9]. [c.51]

    Для разделения различных металлов путем электролиза в раствор вводят реактивы, влияющие на pH среды и образующие комплексные соединения с разделяемыми ионами. Например, для разделения меди, висмута, свинца и олова электролизом на ртутном катоде при контролируемом потенциале в раствор добавляют гидразин. При этом гидразин образует комплекс с медью (П) или.при некоторых условиях медь (П) восстанавливается до меди (I). [c.59]

    Водородистые соединения сурьмы и висмута являются типичными неполярными молекулами с дипольными моментами, равными нулю. Они не поляризуются и не образуют комплексных ионов ни с ионом Н+, ни с положительными ионами металлов. [c.508]

    На реакциях комплексообразования основаны многие процессы. Особенно широкое применение нашли реакции комплексообразования в аналитической химии для разделения элементов. Например, для разделения ионов меди и висмута к раствору солей обоих металлов прибавляют избыток аммиака, при этом медь образует растворимый аммиакат, а висмут осаждается в виде гидроксида. Железо можно отделить от титана сероводородом в аммиачном растворе. Для этого к раствору прибавляют винную кислоту, которая в аммиачном растворе связывает (маскирует) ионы титана в устойчивое растворимое комплексное [c.175]

    Поэтому В1 + элюируется довольно быстро, и первые порции элюата содержат исключительно комплексные ионы висмута (рис. 5.2). Ионы кадмия и меди остаются на смоле. Чтобы извлечь кадмий, через ионит пропускают 0,5 М НВг. В последнюю очередь вымывают Сц2+ [c.109]

    Ниже кратко рассмотрены два представителя галогенокомплексов сурьмы и висмута с цезием, для которого комплексные соединения рассматриваемого типа наиболее характерны. [c.110]

    Гидроокиси меди и кадмия и окись серебра растворяются в избытке раствора аммиака с образованием аммиакатов [Си(ЫНз)4] — интенсивного синего цвета, остальные — бесцветны. Реакции катионов IV аналитической группы с N1 40 широко используют в систематическом ходе анализа катионов. Например а) для открытия ионов меди по характерному синему окрашиванию комплексных ионов [ u(NHз)4) б) для открытия ионов висмута (по образованию белого осадка основной соли висмута) в присутствии кадмия и меди, гидроокиси которых растворимы в избытке NH40H в) для разделения хлоридов серебра и закисной ртути, осаждаемых совместно соляной кислотой, с последующим растворением хлорида серебра в NH40H. [c.312]

    Свинец и висмут комплексно-аммиачных соединений не образуют. Ионы ртути Hg и Hgg образуют с аммиаком трудно растворимые моно- и димеркураммонийные соли NH2HgX белого и NH2Hg2X — черного цвета. [c.373]

    Протеканию реакции мешает ряд веществ. Прежде всего должны отсутствовать в заметных количествах анионы кислот фосфаты, ацетаты, арсенаты, фториды, бораты, хлориды, сульфаты, которые, в свою очередь, дают комплексные соединения, а также элементы, ионы которых образуют комплексные соединения с роданидом кобалы(П), хром 111), висмут(1П), [c.488]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]


    Растворимость осадков вследствие образования комплекса с избытком осадителя. Ряд осадков характеризуется способностью реагировать с избытком осадителя, образуя растворимые комплексные соединения. Так, например, хорошо известны свойства йодистого висмута или йодной ртути. Эти веш,ества мало растворимы в воде для йодистого висмута растворимость составляет около г-молей в 1 л, для йодной ртути соответственно 2Л0 г-молей в 1 л. Таким образом, растворимость этих осадков близка к растворимости, например, сернокислого свинца. Несмотря на довольно малую растворимость, осадки типа В1Лз или HgJ2 нельзя применять в количественном анализе для отделения соответствующих катионов. Содержание определяемого иона, например Н + или В1 " + заранее (перед анализом), конечно, неизвестно. Поэтому нельзя прибавить точно необходимое количество осадителя, в данном случае ионов йода. При введении же избытка осадителя такие осадки растворяются с образованием комплексных ионов HgJз или В Л .  [c.45]

    Скорость пропускания раствора через редуктор зависит от характера восстановителя, от характера восстанавливаемого металла и от условий восстановления. В большинстве случаев можно подобрать условия, при которых 25 млО, н. раствора полностью восстанавливаются при пропускании через редуктор в течение 4—6 мин. Степень восстановления может изменяться в зависимости от того, взят ли солянокислый или сернокислый раствор. Так, например, металлический висмут в солянокислых растворах является более сильным восстановителем. Это обусловлено связыванием ионов висмута в комплексную кислоту НВ1С14, вследствие чего концентрация ионов висмута уменьшается и окислительный потенциал его понижается. [c.370]

    Сущность работы. Ион висмута образует с тиомочевиной С8(>1Н2)2 (ТЫО) комплексные соединения различного состава в зависимости от концентрации реагента от бесцветного В1ТЫ0з+ до желтого В1(ТЬ10) +. [c.149]

    Запись данных опыта. Отметить наблюдае.мые явления во всех случаях-и сделать вывод о свойствах гидроксидов сурьмы и висмута. Написать в молекулярном и ионном виде уравнения реакций получения указанных гидроксидов и их взаимодействия с кислотой и щелочью, учитывая, что в избытке щелочи гидроксид сурьмы образует комплексный анион [Sb(OH)( ] " — гексагидро-ксостибат (1Г1). В какой среде наиболее устойчив этот анион В какой среде устойчив, катион Sb  [c.159]

    Опыт 5. Получение комплексного тетраиодо-( 111)висмутата калия. Поместите в пробирку несколько капель концентрированного раствора нитрата висмута, подкислите его несколькими каплями HNO для предотвращения гидролиза и добавьте каплю раствора К1. Образовавщийся черный осадок Bil, растворите, прибавляя к нему по каплям раствор KI. Уравнение реакции [c.224]

    Тригалиды висмута также подвергаются гидролизу с образованием галоксидов ВЮГ кислотообразующий характер их выражается в способности с галидами активных металлов образовать комплексные гало-(1П) висмутаты, например  [c.211]

    Ионы висмута мешают обнаружению ртути (II), так как при действии К1 вверху образуется серо-черная зона ВИз, переходящая в желто-оранжевую зону вследствие образования комплексного иона [В ] , которая маскирует оранжевую зону HgI2, а поэтому В1 + восстанавливают Ыа23п02 до металлического состояния. [c.190]

    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    Мышьяк, сурьма и висмут образуют комплексные соединения,-например Ыа[5Ь(ОН)б], К[5ЬРб]. Соединения этих элементов (особенно с окислительным числом -ЬЗ) весьма ядовиты. Однако очень малые дозы мышьяка, например в растворе КАзОа, применяют в медицине как лечебный препарат. [c.302]

    Рассчотайге равновесную конценфацию ионов висмута(П1) в растворе комплекса Кз[В11 ] с концетрацией 0,100 моль/л, содержащем иодид калия KI с конценфацией 0,100 моль/л. Логарифм константы устойчивости комплексною аниона равен IgP = 19,1. Ответ [Bi ] = 7,910 моль/л. [c.219]

    Другие реакции висмута Ш). Известно большое число (несколько десятков) реакций висмута(Ш), кото )ые могут иметь аналитическое значение. Так, с тиосульфатом натрия при нагревании выделяется осадок сульфида висмута 81283 с гидрофосфатом натрия Na2HP04 — белый осадок фосфата висмута В1Р04 с дихроматами — желтый осадок дихромата висмутила (В10)2Сг207 с 8-оксихинолином и К1 — оранжево-красный осадок комплексного соединения — и т. д. [c.393]

    Осаждение малорастворимых соединений. В этой группе методов используется осаждение таких соединений, как гексахлоростаннаты, гексахлороплюмбаты и комплексные галогениды сурьмы и висмута с рубидием и цезием. [c.140]

    Двух-трехкратное осаждение позволяет получить из концентрата с содержанием 80% Rb I и 20% K I технический Rb l, содержащий 98% основного вещества. Несколько ниже качество Rb l, получаемого при аналогичном осаждении соединения сурьмы (96%). Некоторым преимуществом применения комплексных галогенидов висмута является более полное выделение в осадок продуктов его гидролиза, с помощью которого практически полностью регенерируется осадитель. Из обогащенных галогенидов рубидия (80%-ных) за 2—3 стадии переосаждения можно получить технические соли. Это указывает на эффективность использования комплексных соединений типа Ме [А На1 +з ,] при решении ряда технологических задач [117]. [c.142]

    Титриметрический анализ. Комплексонометрия — один из широко распространенных методов анализа, основанный на применении комплексонов — органических соединений, содержащих азот и карбоксильные группы. Титрование комплексонами различного состава позволяет определять многие элементы цирконий, железо, висмут, кадмий, медь, цинк, магний, кальций и др. Известны и другие титриметрические методы, в которых используют комплексные соединения. Так, существует метод титрования фторидами— фторометрия, солями ртути (II) — меркуро-метрия и др. [c.24]

    Селективность комплексометрических методов обычно невелика и зависит от того, какие именно донорные атомы являются реакционными началами титранта. Так, при титровании иодидом калия селективность достаточно высокая, потому что иодид-ионы образуют комплексы или осадки только с ионами ртути, серебра, свинца, висмута. Аммиак и полиамины также более селективны по сравнению, например, с комплексонами, так как они реагируют только с ионами Со, N1, Си, 2п, Сс1, Нд и Ад. Аммиак в качестве титранта имеет некоторые недостатки, связанные прежде всего с малой прочностью аммиакатов металлов, Применение полиаминов, например тетраэтилен-пентамина имеет преимущество как по селективности взаимодействия, так и по образованию прочных комплексных соединений. [c.270]


Смотреть страницы где упоминается термин Висмут комплексные: [c.223]    [c.368]    [c.368]    [c.298]    [c.472]    [c.474]    [c.81]    [c.142]    [c.142]    [c.42]    [c.205]    [c.375]    [c.521]   
Курс неорганической химии (1963) -- [ c.730 ]

Основы общей химии Т 1 (1965) -- [ c.455 , c.460 , c.465 ]

Курс неорганической химии (1972) -- [ c.653 ]

Основы общей химии том №1 (1965) -- [ c.455 , c.460 , c.465 ]




ПОИСК







© 2024 chem21.info Реклама на сайте