Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы перенапряжение выделения водорода

    Перенапряжение зависит от материала электродов, состояния их поверхности, плотности тока и температуры. На платине перенапряжение выделения водорода невелико (0,09 В), но оно значительно на цинке (1,0 В) и свинце (1,3 В). На металлах перенапряжение выделения водорода убывает в последовательности Н > РЬ > [c.221]

    На чистых металлах перенапряжение выделения водорода, очевидно, слабо зависит от структуры образующегося осадка и монотонно возрастает с увеличением плотности тока. При электроосаждении сплавов, напротив, перенапряжение выделения водорода зависит от их состава. Поскольку при каждом потенциале образуются сплавы различного состава, на них перенапряжение выделения водорода может изменяться не монотонно. Например, на сплавах железо — никель перенапряжение выделения водорода изменяется на 400 мВ при увеличении массовой доли никеля от 20 до 90 %. Последнее может приводить к сложному характеру зависимости вы.хода по току от плотности тока. Это особенно следует ожидать для сплавов, состоящих из металлов с высоким и низким перенапряжением выделения водорода, например цинк — железо, цинк — никель и др. Реакции выделения водорода приводят, помимо снижения выхода по току, к подщелачиванию при-электродного слоя, что в свою очередь влияет на скорость реакции, а также на структуру и свойства электролитических осадков. Типичный вид зависимости pH прикатодного слоя от pH в объеме электролита приведен на рис. 2.1. [c.37]


    Перенапряжение выделения водорода на различных металлах [c.304]

    В качестве примера можно указать на коррозию цинка, содержащего небольшие примеси н<елеза илн меди, в соляной или в разбавленной серной кислотах. При содержании в цинке сотых долей процента какого-либо из этнх металлов скорость взаимодействия его с указанными кислотами в сотни раз выше, чем в случае цинка, подвергшегося специальной очистке. Это объясняется тем, что перенапряжение выделения водорода на меди и на железе нн) .е, чем на цин ке, а лимитирующей стадией (см. 61) реакции [c.556]

    Механизм процессов электрохимического рафинирования и электроэкстракции с применением жидких электродов из ртути или ее сплавов — амальгамная металлургия [6] — сходен с механизмом процессов, протекающих на твердых электродах. В настоящее время амальгамная металлургия распространена мало. Особенностями электролиза с ртутными электродами, отличающими его от процессов на твердых электродах, являются высокое перенапряжение выделения водорода == 1,41 + 0,114 lg г) и значительная деполяризация вследствие образования сплава металла с ртутью. Оба эти обстоятельства позволяют выделять из водных растворов даже такой электроотрицательный металл, как натрий. [c.251]

    Кроме того, из нескольких заданных металлов с известными величинами равновесных потенциалов Вр в том же электролите выбрать те, для которых металл М может обеспечить протекторную защиту. Вычислить для выбранных металлов и для металла М перенапряжение выделения водорода т] , при плотности тока, соответствующей если кинетика выделения водорода подчиняется уравнению Тафеля. [c.162]

    Как упоминалось выще, N1 и Со относятся группе металлов с низким перенапряжением выделения водорода на них. Что -касается РЬ, 5п, Сс1, то перенапряжение водорода на этих металлах весьма значительно. Поэтому их электролиз можно вести и при pH = 1. Напри/ме р, -свинец в кислых растворах ведет себя как электроположительный металл. Сульфат свинца слабо растворим, его концентрация в воде при 25° С равна 1,5- 10 г-моль л. Но и при столь малой концентрации свинец осаждается на катоде из насыщенного раствора сульфата в губчатой форме с практически теоретическим выходом по току. [c.44]

    Для получения высоких выходов по току необходимо применять чистую ртуть и растворы, очищенные от примесей металлов, на которых наблюдается низкои перенапряжение выделения водорода. [c.77]


    Значение потенциала можно легко сдвинуть, изменяя кислотность среды, хотя возможности смещения его в отрицательную область (большие значения pH) ограничены образованием осадков гидроксидов выделяемых катионов. Выпадение гидроксидов можно предотвратить, используя реакции комплексообразования, но все же для получения хороших результатов необходимо принимать защитные меры (так как в результате комплексообразования уменьшается активность катионов металлов и их потенциал также сдвигается в отрицательную область). Сильно отрицательное перенапряжение водорода (пНз) на многих металлах по этой причине оказывает благоприятное влияние, поскольку дает возможность проводить электрогравиметрическое определение ряда металлов, как было указано выше. Наконец, следует также учитывать, что потенциал водорода в процессе электролиза сдвигается в сторону положительных значений, так как в растворе возрастает концентрация ионов Н3О+, образующихся эквивалентно количеству выделившегося на катоде металла. Потенциал выделения водорода и по окончании электролиза не должен достигать потенциала зоны осаждения. [c.262]

    Вода не действует на олово. Разбавленные соляная и серная кислоты действуют на него очень медленно, что объясняется большим перенапряжением выделения водорода на этом металле. [c.422]

    Включения инородного металла очень малы. Такие включения практически не изменяют величину потенциала основного металла в данном растворе. В этом сл чае ускорение коррозии может наблюдаться, если перенапряжение окислительной полуреакции на металле включения меньше, чем на основном металле. В качестве примера можно указать на коррозию цинка, содержащего небольшие примеси железа или меди, в соляной или в разбавленной серной кислотах (рис. 38.6). При содержании в цинке сотых долей процента какого-либо из этих металлов скорость взаимодействия его с указанными кислотами в сотни раз выше, чем в случае цинка, подвергшегося специальной очистке. Это объясняется тем, что перенапряжение выделения водорода на меди и на железе ниже, чем на цинке, а лимитирующей стадией реакции [c.688]

    Итак, теоретический расчет и экспериментальные данные показывают, что при оценке величины /,., в определенных условиях можно пользоваться точкой пересечения поляризационных кривых растворения основного металла и выделения водорода на включении. Если растворению подвергается лишь основной металл, то ток его саморастворения можно определить по скорости выделения водорода, которая складывается из тока выделения водорода на основном металле и на включении при стационарном потенциале. Токи выделения водорода, а следовательно, и / можно рассчитать, зная площади поверхностей основного металла и включения 5 и зависимости скорости выделения водорода на них от перенапряжения. В самом деле, предположим, что скорость выделения водорода на основном металле и включении подчиняется уравнению Тафеля (см. уравнение (47.6)] с одинаковым коэффициентом Ь, но с различными значениями а, причем а >ав т. е. включение обладает меньшим перенапряжением водорода. Одинаковое значение потенциала на основном металле и на включении означает, что [c.364]

    Применение органических веществ для защиты металлов от коррозии основано на том, что органические вещества тормозят процессы выделения водорода и (или) анодного растворения металла (рис, 201). Если органическое вещество повышает только перенапряжение выделения водорода (катодный ингибитор), то скорость саморастворения [c.375]

    Применение органических веществ для защиты металлов от коррозии основано на том, что органические вещества тормозят процессы выделения водорода и (или) анодного растворения металла (рис. 198). Если органическое вещество повышает только перенапряжение выделения водорода (катодный ингибитор), то скорость саморастворения металла уменьшается, а стационарный потенциал электрода смещается в отрицательную сторону (рис. 198,а). Анодные участки поляризационной кривой в отсутствие и присутствии ингибиторов совпадают. [c.388]

    Поляризация электрода ведет к перенапряжению. Перенапряжений связано с превышением потенциала разрядки ионов над нормальным потенциалом в равновесных условиях. Перенапряжение выделения водорода на различных металлах различно. Так, в ряду Р , А , Си, 2п, Н перенапряжение выделения водорода слева направо возрастает. [c.151]

    Существенно на скорость выделения водорода влияет природа катодных участков. Некоторые металлы, например платина, кобальт, никель и др., катализируют выделение водорода, и катодный процесс на них протекает с высокими скоростями. Поэтому, если в составе металла или сплава находятся металлы, катализирующие выделение водорода, то коррозия с выделением водорода может ускоряться за счет этих компонентов в сплаве. Другие металлы, например, ртуть, свинец, кадмий, цинк, не катализируют или слабо катализируют катодное выделение водорода, и катодный процесс на них протекает медленно. Поэтому присутствие в составе сплава таких компонентов или не меняет скорости коррозии основного металла, или снижает ее из-за уменьшения площади поверхности, занимаемой основным металлом, на которой происходят и растворение металла и выделение водорода. Влияние природы металла на скорость выделения водорода количественно можно оценить по перенапряжению водорода на различных металлах (см. табл. 22). Чем ниже перенапряжение водорода, тем большей каталитической активностью к реакции выделения водорода обладает металл и тем выше скорость выделения водорода при данном потенциале катодного участка, а следовательно, и больше скорость коррозии. Чем выше перенапряжение, тем меньше и скорость выделения водорода при данном потенциале катодного участка, тем ниже скорость коррозии металла. Таким образом, скорость коррозии с выделением водорода может быть замедлена снижением температуры и уменьшением концентрации ионов Н , очисткой металла от примесей, катализирующих выделение водорода, а также изоляцией поверхности металла. Перемешивание раствора практически не влияет на скорость выделения водорода. [c.216]


    В ряду стандартных потенциалов. Эта аномалия объясняется значительным перенапряжением второго из этих двух электродных процессов — материал анода оказывает тормозящее действие на процесс выделения кислорода (служит отрицательным катализатором процесса). Аналогичное явление может наблюдаться при электролитическом выделении водорода. Величина перенапряжения зависит от природы электрода. Перенапряжение выделения водорода на металлах убывает в следующем порядке  [c.125]

    Из рис. 75 видно, также, что при выключении тока образующаяся в процессе электролиза пленка растворяется в хромовой кислоте, о чем свидетельствует тот факт, что при повторном включении тока максимальное значение плотности тока достигает первоначальной величины. Образование пленки на катоде приводит к смещению катодного потенциала в более отрицательную сторону и делает возможным, наряду с разрядом ионов водорода, восстановление хромовой кислоты до металла и трехвалентного хрома. Можно полагать, что при образовании пленки перенапряжение выделения водорода больше, чем на чистой поверхности хрома. [c.192]

    Вторым способом увеличения истинной поверхности является гальваническое осаждение на электроды металлов в виде губки. Этим удается снизить перенапряжение примерно на 0,3—0,4 в. Впрочем, катоды электролизных ванн спустя некоторое время работы самопроизвольно покрываются слоем губчатого железа, осаждаемого током в процессе электролиза, так как вследствие коррозии аппаратуры в растворе появляются ионы железа, хотя и в очень малых количествах. Было предложено также гальванически покрывать катоды никелем, причем вести электролиз из раствора с добавкой роданистой соли [И], При этом в катодном осадке оказывается до 20% серы, которая затем выщелачиваясь в раствор, создает высокоразвитую поверхность электрода. Перенапряжение выделения водорода в результате этого может быть снижено в условиях опытов на 0,3—0,4 в. [c.339]

    Если процесс восстановления протекает на катоде с малым перенапряжением выделения водорода, первая стадия процесса не должна определять кинетику суммарного процесса, а потенциал катода можно считать близким к равновесному. В этом случае строение двойного электрического слоя и адсорбция поверхностноактивных веществ не будут сказываться на кинетике процесса, и определять закономерности последней будет замедленность химической стадии восстановления органического вещества атомарным водородом. Если же процесс протекает на катоде с высоким перенапряжением выделения водорода, определять кинетику восстановления будет замедленность первой электрохимической стадии, и кинетические закономерности восстановления не будут отличаться от наблюдаемых для перенапряжения выделения водорода на этом металле. Плотность тока в этом случае не будет существенно зависеть от концентрации органического вещества в электролите. Подобные кинетические закономерности наблюдаются также при использовании, так называемых, переносчиков водорода, каталитических добавок ионов металлов переменной валентности, таких как титан, ванадий, хром, церий и т. д. Подобные добавки применяют в тех случаях, когда электродный процесс восстановления органического соединения требует значительно большего перенапряжения, чем восстановление иона металла переменной валентности, например в то время как восстановление органического вещества происходит без затруднений в растворе под действием который окисляется до Естественно, что кинетика суммарного процесса восстановления органического соединения в этом случае будет определяться замедленностью процесса восстановления ионов металла переменной валентности. [c.445]

    Скорости ионных реакций в растворе обычно весьма значительны, и поэтому кинетику суммарного процесса будет определять замедленность стадии разряда органической молекулы. В этом случае плотность тока не будет зависеть от pH раствора и будет определяться потенциалом на границе раздела металл — раствор и концентрацией органического деполяризатора на поверхности катода. Чем труднее восстанавливается органическая молекула, тем более отрицательный потенциал необходимо создать на поверхности катода. Естественно, что в этом случае важное значение приобретает выбор материала электрода. Использование катодов с низким перенапряжением выделения водорода в случае трудно восстанавливающихся веществ приведет к тому, что на катоде одновременно с реакцией восстановления будет происходить выделение водорода и, соответственно, выход по току продуктов восстановления будет уменьшаться с ростом катодного потенциала и плотности тока. В связи с разрядом водорода на катоде, хотя скорость процесса катодного восстановления при постоянном потенциале не будет зависеть от pH, выход по току будет снижаться с уменьшением pH электролита. [c.446]

    Металл Перенапряжение выделения водорода (В) при плотнос [и тока Перенапряжение выделения кислорода (В) при плотности тока [c.22]

    Металл электрода Электролит Перенапряжение выделении водорода. В Металл электрода Электролит Перенанряже-иие выделения водорода, В [c.304]

    Угол наклона dr /d Ig j кривой, описываемой этим уравнением, невелик для небольших значений /. Наклон увеличивается по мере приближения / к / ор + /г и достигает значения р при / > 3> /г + /кор- Перенапряжение выделения водорода для некорродирующего металла также можно выразить с помощью тафелев-ского уравнения, оно имеет вид il = Р Ig (/ + It)/Io и справедливо для всех значений / (см. рис. 4.5). Значения /,, вычисленные с помощью измеренных значений т], также следуют соотношению Тафеля, но с наклоном обратного знака. Наиболее медленной стадией разряда ионов водорода на платине или палладии, видимо, является рекомбинация адсорбированных атомов водорода. Справедливость этого допущения подтверждается тем, что найденное значение а = 2. Для железа а 0,5 и, соответственно, р = = 0,1. Вероятно, медленная стадия реакции выделения водорода на железе протекает по схеме [c.57]

    В табл. 12, 13 приведены величины перенапряжения выделения водорода и кислорода на различных металлах, а в табл. 14 — данные о коэффициентах а и Ь уравнения Тафеля, опубликоваиные в книге А. Н. Фрумвина [c.37]

    Выделение на катоде этой группы металлов возможно за счет возникно ьения перенапряжения выделения водорода на этих металлах. Их можно разделить на две основные группы по величинам перенапряжения выделения водорода на них (см. тайл. 12—14). Так металлы — ртуть, цинк, свинец, к.ад- [c.41]

    Введение этих добавок осуществляется с различными целями—для повышения перенапряжения выделения водорода на катоде, замедления самопроизвольного растворения металлов и др. Добавки поверхностно активных веществ существенно влияют на характер кристаллизации металла на катоде, с их помощью достигается получение гладких осадков в тех случаях, когда на катоде возникают игольчатые и шишковидные о6разова1ния. В месте с тем в некоторых случаях присутствие в растворах поверхностно активных веществ нежелательно, так как они нередко являются источником или причиной примесей в катодных осадках. [c.100]

    Перенапряжение выделения водорода на различных металлах необходимо учитывать и при выборе катода для осаждения цинка при электролизе кислых растворов. Например, цинк выделяется яа гладкой платине из раствора 1-н. ZnSO -f 1 н. H2SO4 лишь при значительной плотности тока (порядка 300 а/ж ), в то время как на свинце осадок появляется при значительно меньшей плотности тока (20 а/м ). В табл. 95 приведены данные В. В. Стендера и А. Г. Печерской из которых видно, что начало осаждения имеет место при мало изменяющихся значениях потенциала -катода, при кото-ром поляризационная кривая разряда и образования ионов цинка переходит из анодной части в катодную (см. гл. I, 6, рис. (18, 19), но при различных плотностях тока. Чем ниже перенапряжение выделения водорода на металле, тем выше плотность тока начала выделения на нем цинка. [c.436]

    В ТО же время присутствие в растворе ионов кадмия и свинца — металлов, на которых наблюдается повышенное перенапряжение выделения водорода, мало сказывается на увеличении скорости растворения цинка. Влияние примесей проявляется в том, что атомарные их включения на поверхности металла, образующиеся либо в результате восстайЪвления цинком их ионов из раствора, либо вследствие электролитического осаждения, создают на поверхности цинка участки, на которых в той или иной степени занижено перенапряжение выделения водорода. [c.439]

    Металл э.лектрода Электролит Перенапряжение выделения водорода, В Металл элек 1 рода Электролит Перенапряже- ние Быделени.ч водорода, В [c.288]

    Разбав-пенные соляная и серная кислоты почти ие действуют на свинец. Это связано со значительным перенапряжением выделения водорода iia сиппце, а также с малой растворимостью хлорида и сульфата свинца, закрывающих поверхность растворяющегося металла. В концентрированной серной кислоте, особенно при нагревании, свинец интенсивно растворяется с образованием растворимой кислой соли Pb(HS04)-3. [c.425]

    Для ряда систем отрицательный дифференц-эффект может быть объяснен на основе так называемой пленочной теории, согласно которой при прохождении через металл анодного тока оксидная пленка, покрывающая металл, разрушается. Причиной этого служат анодный рост пленки и ее взаимодействие с электролитом на границе пленка — раствор, приводящие к возникновению внутренних напряжений в системе металл — пленка. Кроме того, при медленном возобновлении пленки и быстром растворении металла поверхность металла при анодном растворении оказывается менее защищенной. Если перенапряжение выделения водорода на пленке больше, чем на чистом металле, то появ-ление свободной металлической поверхности может привести к увеличению скорости выделения водорода и соответственно скорости саморастворения металла (рис. 191). [c.361]

    ВЛИЯНИЕ СТРУКТУРЫ ДВОЙНОГО слоя и ПРИРОДЫ МЕТАЛЛА НА ПЕРЕНАПРЯЖЕНИЕ ВЫДЕЛЕНИЯ ВОДОРОДА И ЭЛЕКГРОВОССТАНОВЛЕНИЕ АНИОНОВ [c.196]

    VIII.7. Влияние структуры двойного слоя и природы металла на перенапряжение выделения водорода и электровосстановление анионов [c.233]

    Процесс этот имеет прикладное значение, поскольку глиоксале-вая кислота является исходным сырьем для синтетического получения ванилина и ванилаля. Электрохимическое восстановление щавелевой кислоты сильно зависит от природы металла, используемого в качестве катода. На катодах с низким перенапряжением выделения водорода — никеле, платине, восстановления не наблюдается, в то время как на катодах из ртути, свинца, амальгамы таллия и кадмия процесс восстановления протекает без существенных затруднений. Наиболее эффективно процесс осуществляется на кадмиевом катоде, потенциал точки нулевого заряда которого, как показано на рис. 202, наиболее сильно сдвинут в электроотрицательную сторону, а перенапряжение выделения водорода велико. [c.448]


Смотреть страницы где упоминается термин Металлы перенапряжение выделения водорода: [c.115]    [c.81]    [c.115]    [c.495]    [c.146]    [c.438]    [c.146]    [c.213]    [c.256]   
Производство водорода кислорода хлора и щелочей (1981) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние структуры двойного ело и природы металла на перенапряжение выделения водорода и электровосстановление анионов

Влияние структуры двойного слоя и природы металла на перенапряжение выделения водорода и электровосстановление анионов

Измерение потенциала выделения металла и перенапряжения водорода

Металлы водородом

Металлы выделение из руд

Металлы перенапряжение

Перенапряжение

Перенапряжение водорода

Работа 38. Определение перс напряжения водорода (косвенный метод) (18а). Работа 39. Определение перенапряжении выделения металлов



© 2025 chem21.info Реклама на сайте