Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиз косвенные методы

    Другой косвенный метод основан на электролизе водного раствора хлорида никеля с выделением на аноде хлора, а на катоде — металлического никеля  [c.290]

    Электролиз соляной кислоты обычно проводят в биполярных ваннах, где катодные и анодные ячейки разделены диафрагмами, препятствующими смешиванию хлора и водорода. Применение диафрагм усложняет конструкцию электролизера, поэтому был предложен так называемый косвенный метод электролиза соляной кислоты. Суть этого метода заключается в следующем. [c.51]


    При прямом электролизе определяемое вещество само реагирует на электродах, в косвенном методе определяемое вещество реагирует с продуктами электролитического разложения специально подобранного вещества (с электролитически генерированным реагентом). [c.252]

    Для экспериментального определения молярных масс эквивалента химических элементов используют 1) прямой метод, основанный на данных по синтезу водородных или кислородных соединений элемента 2) косвенный метод, в котором вместо водорода и кислорода используют другие элементы с известным эквивалентом 3) метод вытеснения водорода из кислоты металлом взятой навески 4) аналитический метод, основанный на определении массовой доли элемента в одном из его соединений 5) электрохимический метод, использующий данные электролиза. Если для элемента известны значения степени окисления и А , то молярная масса эквивалента может быть вычислена из отношения первой величины ко второй. [c.15]

    Электролиз является одним из простейших и в то же время распространеннейших методов физико-химического анализа. Пользуясь этим методом, выделяют из растворов металлы или их окислы посредством электрического тока, а затем взвешивают выделенные осадки. Таким образом, этот метод физико-химического анализа несколько выпадает из общей классификации, данной ранее. Электроанализ правильнее было бы отнести к весовому методу анализа, в котором в качестве реагента , выделяющего тот или другой компонент в осадок, применяют электрический ток. Однако в связи с тем, что вьщеление металлов электрическим током связано с рядом индивидуальных свойств ионов—потенциалом выделения, перенапряжением и другими—этот метод рассматривается как косвенный метод физико-химического анализа. [c.296]

    В последние годы электролизу соляной кислоты уделяется значительное внимание в ряде стран. Разрабатываются прямой метод электролиза водных растворов НС1 с получением хлора, водорода и косвенные методы электролиза хлоридов, например меди или никеля. Прн электролизе растворов солей двухвалентной. меди на катоде она восстанавливается до одновалентной. [c.268]

    Разработаны прямой и косвенный методы электролиза соляной кислоты. По прямому методу электролизу подвергается непосредственно соляная кислота. При этом на аноде выделяется хлор, а на катоде — водород. [c.253]


    КОСВЕННЫЕ МЕТОДЫ ЭЛЕКТРОЛИЗА СОЛЯНОЙ КИСЛОТЫ [c.285]

    Работы, выполняемые методом косвенной кулонометрии, или кулонометрического титрования, при постоянной силе тока электролиза [c.219]

    При разработке косвенных методов электролиза соляной кислоты исходят из стремления, сохранив неизменными условия и продукты анодного процесса, изменить катодный процесс так, чтобы снизить величину катодного потенциала и соответственно уменьшить общее напряжение на ячейке, что позволяет сократить расход электроэнергии на получение хлора. В этих условиях на катоде водород не образуется, а происходит восстановление катионов до металла, как, например, в процессах электролиза хлоридов никеля или ртути, или же до образования катионов меньшей валентности, как при электролизе хлоридов меди или железа. [c.285]

    Среди методов кулонометрии различают пряные и косвенные. Последние известны как методы кулонометрического титрования. Для всех методов кулонометрии обязательным является условие, при котором превращение вещества на электроде должно протекать со 100%-ной эффективностью, т.е. со 100%-ным выходом по току. Иначе говоря, внешнее напряжение должно обеспечивать электролиз определяемого вещества и в то же время быть недостаточным для возникновения побочных электрохимических реакций. Это условие означает строгое выполнение пропорциональной зависимости между количеством прошедшего через ячейку электричества и суммарным количеством продукта электролиза. [c.517]

    В косвенных методах электролизу подвергаются растворы хлоридов некоторых металлов, выбранных таким образом, чтобы на катоде вместо водорода выделялся металл (например Hg, Ni или Со) либо проходило воостановление ионов металлов от высшей до низшей валентности (например Си или Fe). При этом металл дол- [c.253]

    Процессы разряда ионов металла протекают на катоде практически без перенапряжения в отличие от разряда водорода. Поэтому косвенные методы электролиза соляной кислоты могут быть проведены с меньшим напряжением на ячейке электролизера и более низким удельным расходом электроэнергии. Одновременно упрощается конструкция электролизера, так как при электролизе образуется только один газообразный продукт — хлор и нет необходимости в устройствах для разделения газовых электродных продуктов. Однако при этом необходимо осуществлять дополнительные стадии растворения выделяющихся на катоде металлов либо перевода ионов металла из низшей валентности в высшую для регенерации исходного электролита. Это усложняет схему производства, требуется дополнительная аппаратура и возрастают затраты. [c.254]

    Электропроводимость упомянутых растворов хлоридов ниже электропроводимости растворов соляной кислоты, причем это снижение больше в случае добавки хлорида меди и меньше при добавке хлорида ртути. Более низкая электропроводимость растворов, применяемых при косвенных методах электролиза соляной кислоты, ухудшает их энергетические показатели. [c.261]

    Различают электролиз при контролируемом потенциале и электролиз при контролируемой силе тока. Первый является прямым, второй может быть прямым и косвенным кулонометрическим методом. [c.252]

    Полная аналогия в химических явлениях позволила назвать метод косвенного электролиза при контролируемой силе тока методом кулонометрического титрования. [c.257]

    Приготовление безводных хлоридов редкоземельных элементов представляет значительный интерес ввиду того, что эти соединения служат исходным материалом для приготовления соответствующих металлов. Получение редкоземельных металлов из их хлоридов осуществляется или непосредственно электролизом солей в расплавленном состоянии или косвенно — электролизом в спиртовой среде с ртутным катодом и последующим термическим разложением получающихся амальгам. Наиболее важными методами приготовления безводных хлоридов, опубликован- [c.31]

    Если в прямой кулонометрии электрохимическому превращению подвергается определяемое вещество, то в методах косвенной кулонометрии определение количества вещества складывается из электрохимической и химической реакций. Определяемое вещество не участвует в реакции, протекающей на электроде. В ходе электролиза генерируется титрант, который вступает в химическую реакцию с определяемым компонентом в объеме раствора кулонометрическое титрование с внутренней генерацией). Поэтому в косвенной кулонометрии необходимо иметь способ обнаружения момента завершения химической реакции генерированного на электроде титранта с определяемым веществом. Для установления конечной точки титрования применяют потенциометрический, амперометрический, фотометрический или другие методы. [c.517]

    В косвенной кулонометрии определяемое вещество, как правило, не принимает участия в электрохимической реакции. Электролиз при постоянной силе тока используют для электрохимической генерации титранта или из вспомогательного реагента, или из материала рабочего электрода . Титрант быстро и количественно реагирует с определяемым веществом. Необходимо убедиться в достижении конечной точки титрования. Наиболее часто используемыми и чувствительными методами для определения конечной точки кулонометрического титрования являются потенциометрия и амперометрия. Кулонометрическое титрование можно автоматизировать. [c.437]


    Одним из наиболее перспективных путей получения восстанавливающихся элементов является, безусловно, их электролиз на ртутном катоде. Как правило, электролитическое восстановление 5т, Ей, УЬ проводят из аце-тат-цитратных растворов, содержащих ион щелочного металла (Ыа , К" ", Ь ), что дает основание рассматривать катод как амальгамированный соответствующим щелочным металлом. По-видимому, в действительности происходит восстановление р. з. э. за счет обеих причин — прямого электролиза на ртутном катоде и восстановления образовавшейся амальгамой щелочного металла. Но каков бы ни был истинный механизм электролиза на гра-нице раздела (прикатодный слой электролита — ртуть), его эффективность как метода разделения, согласно уравнению Нернста, определяется соотношением концентраций Ме " в электролите и Ме в амальгаме. Следовательно, всякий фактор, влияющий на изменение любой из этих величин, косвенно воздействует и на результаты электролитического восстановления. [c.287]

    Почему метод анализа электролизом относится к косвенным физикохимическим методам анализа  [c.344]

    При помощи 8-оксихинолина алюминий определяют либо непосредственно, либо путем косвенных реакций. Для повышения чувствительности и избирательности реакции было предложено экстрагировать образующийся оксихинолинат алюминия органическими растворителями [12]. Интервал pH, при котором экстракция оксихинолината является наиболее эффективной, равен 5—6. Чувствительность реакции значительно ниже, чем при применении других органических реагентов на ион алюминия, и равна 0,4 мл А1. Характерно, что в большинстве опубликованных работ рекомендуется производить измерение интенсивности окраски не фотометрическим методом, а методом стандартных серий. Однако принципиально возможны и фотометрические измерения окраски желтого экстракта. В оиределенном интервале концентраций (в нашем случае 12— 60 у в 10 жл общего объема) наблюдается линейная зависимость между содержанием алюминия и оптической плотностью раствора. Железо, хром и ряд других катионов мешают определению алюминия. Для их удаления рекомендуется чаще всего электролиз с ртутным катодом или же предварительная экстракция роданидного комплекса железа смесью эфира и тетрагидро-фурана. Однако все эти методы являются трудоемкими и неудобными для массовых определений. Мешающее действие железа не может быть устранено тиогликолевой и аскорбиновой [c.239]

    С целью снижения удельного расхода электроэйергии и упрощения конструкции электролизера разрабатывались косвенные методы электролиза соляной кислоты, основанные на электролизе хлоридов металлов. При этом на катоде не образуется водород, а происходит восстановление металлического иона до металла, как, например, при электролизе хлоридов никеля или ртути, или до иона с меньшей валентностью, как при электролизе хлоридов меди или железа. Косвенные методы электролиза соляной кислоты позволяют вести процесс при меньшем напряжении на ячейке и меньшем удельном расходе злектроэнергии на производство хлора. [c.297]

    Для уме 1ьшения удельного расхода электроэнергии и упрощения конструкций электролизеров разрабатыва.ти косвенные методы электролиза соляной кислоты, основанные на применении электролиза водных растворов хлоридов металлов. [c.285]

    Электролиз соляной кислоты косвенными методами можно вести при меньшем напряжении на ячейке и с меньщим удельным расходом электроэнергии на производство хлора. Несколько упрощается конструкция электролизера, так как в процессе электролиза образуется только один газ и отпадает необходи- [c.285]

    Зайцев с сотрудниками [206] применили полярографический метод для контроля процесса электролиза диметилового эфира себа-циновой кислоты, в частности для определения формальдегида в растворах, полученных после электролиза монометиладипината. Формальдегид определяется этим автором путем полярографирования соединения, образующегося за счет взаимодействия формальдегида с моноэтаноламином. Полярографический метод в данном случае позволил изучить взаимосвязь между процессами электроокисления метанола и электросинтеза диметилсебацината в различных условиях электролиза и выбрать оптимальные условия ведения технологического процесса. Зайцев, Вахрушев и их соавторы [207] предложили косвенный метод полярографического определения бутил-2-диола-1, 4, имеющего широкое применение в качестве исходного сырья для получения поливинилпирролидона, Ы-ме-тилпирролидона, полиуретанов и др. Зтот продукт образуется при [c.120]

    Таким образом, и в данном косвенном методе электролизу, по сугцеству, подвергается не соляная кислота, а ее соль. Процесс протекает при высокой плотности тока с выходом по току, превышающим 90 %. [c.53]

    Полученные нами концентраты достаточны для того, чтобы проверить и уточнить аналитическую методику, примененную в наших прежних работах, основанную на одновременном точном определении разности плотностей Ad и показателей преломления Ап исследуемого образца и стандартной воды. Подробности анализа и пределы точности измерений были изложены в [8]. Там же указывалось, что недостаточное знание зависимости показателя преломления воды от содержания HgOi обусловливает значительную недостоверность этого анализа, которая ограничивает применимость метода лишь природными водами с очень небольшими вариациями изотопного состава. Поэтому наряду с этим косвенным методом анализа нами был применен также и прямой испытуемая вода разлагалась электролизом, ее кислород сжигался с водородом из аппарата Киппа (Zn HgSOJ, изотопный состав которого близок к нормальному. Избыток плотности полученной синтетической воды (Ady), освобожденной таким способом от избыточного дейтерия, зависит почти целиком, с точностью до нескольких у (небольшие отклонения водорода от нормального изотопного состава, диффузия водорода в анодное пространство электролизера, небольшое фракционирование изотопов при электролизе и сжигании), от избыточного 0 . По разности первоначальной Ad с полученной Ady можно найти Adx — избыточную ва счет дейтерия плотность исследуемой воды. Для проверки одновременно определялись и показатели преломления (Атг ) синтетической воды. Результаты определений помещены в табл. 2. В ней даны разности At равновесных температур поплавка в испытуемом образце и в стандартной воде и температура t в послед- [c.303]

    Однако в этом случае образуются только разбавленные растворы пероксида водорода при малых выходах по току. В промышленности приняты косвенные методы получения Н2О2. По способу Тейхнера [2], электролизом растворов серной кислоты получают надсерную кислоту [c.38]

    Косвенные методы. Наиболее подробно были изучены процессы электролиза хлоридов никеля, меди и ртути. Анодный потенциал выделения хлора при электролизе соляной кислоты и растворов хлоридов никеля, меди и ртути практически одинаков, однако значения катодного потенциала для каждого из этих процессоа существенно различны [338]. [c.261]

    Примером удачного применения метода может служить обнаружение свободного радикала метилпиридиния в ходе катодного восстановления соответствующего катиона (Дж. Гауделло и сотр.). Согласно имевшимся косвенным данным такой радикал весьма нестабилен и вступает в реакцию димеризации, константа скорости которой находится п пределах 10 —10 л/моль-с. Непосредственно обнаружить свободный радикал метилпиридиния (/) не удавалось. Однако проведение электролиза раствора соли, метилпиридиния в присутствии фенил-трет-бутилнитрона II) позволило зафиксировать спектр ЭПР радикала III), строение которого подтверждает факт образования в ходе электролиза свободного радикала (/), стабилизирующегося в результате химической реакции с фенил-трет-бутилнитроном  [c.227]

    КУЛОНОМЕТРИЯ, электрохимический метод исследования и анализа, основанный на измерении кол-ва электричества Q, прошедшего через. электролизер при электрохим. окислении или восстановлении в-ва. Согласно Фарадея закону, Q связано с кoл-вo f электрохимически превращаемого в-ва Р ур-нием Р = 0 /96500, где А — электрохим. эквивалент этого в-ва. Различают прямую К., когда в электродной р-ции участвует только определяемое в-во, к-рое электрохимически активно до конца электролиза, и косвенную К., или кулонометрич. титрование (К. т.), при к-рой, независимо от электрохим. активности определяемого в-ва, в электролизер вводят электрохимически активный вспомогат. реактив, продукт превращения к-рого (кулонометрич. титрант) химически взаимодействует с определяемым в-вом. При определении к-т и оснований вспомогат. реактив не вводят, т. к. соответствующие титранты (ОН иН + ) образуются при электролизе воды в присут. инертных электролитов, обеспечивающих электрич. проводимость р-ра. [c.292]

    В методе косвенной гальваностатической кулонометрии электролиз проводят при постоянном значении силы тока, так же как и в методе прямой гальваностатической кулонометрии. Отличие заключается в том, что электролиз проводят при большой концентрации электроактивного вспомогательного реагента, то есть вспомогательный реагент выполняет роль электрохимического буфера, препятствуя сдвигу потенциала рабочего электрода в процессе электролиза. Поскольку концентрация вспомогательного реагента остается практически неизменной, выход по току титранта при правильно выбранньк условиях остается все время постоянным и близким к 100 %. [c.130]

    В кулошшетрических методах основой для прямого или косвенного количественного опредетвяя веществ является общее количество электричества О, израсходованное на электролиз (см. разд. 7.3). [c.384]

    Техническое применение электрохимических окислительновосстановительных процессов. Электрохимический сип-т е 3, основанный на окислительно-восстановительных реакциях, протекающих при электролизе как первичные и вторичные процессы, нашел практическое применение, главным образом, в электрохимическом окислении неорганических веществ. Окисление органических веществ, как правило, протекает слишком медленно, процессом трудно управлять и он проще осуществляется химическим путем, тем более, что имеется довольно обширный выбор различных окислителей. В окислении органических веществ элек-1рохимический метод находит, главным образом, косвенное применение его используют для регенерации химических окислителей, например хромовой кислоты, марганцовокислых солей и т. п. [c.361]

    В наиболее ранних работах количество примесей в осадках определялось исходя из избыточного (по сравнению с осадками из чистых растворов) веса, обусловленного включением посторонних веществ, в предположении, что этот избыточный вес равен количеству включений. Разумеется, отождествить состав примеси с составом добавки, введенной в раствор, в этих опытах нельзя, как нельзя ничего сказать и о характере возможных химических превращений на катоде. К сожалению, возможности идентификации соединений, в виде которых примесь присутствует в осадках, что не дают и более тонкие методы. Если любым методом (в большинстве случаев спектрофотометрически) анализируется уменьшение концентрации добавки в электролите при протекании электролиза, то остается неизвестным, в каком виде примесь включается в осадок кроме того, в этом случае необходимо разделение катодного и анодного пространств, а также предотвращение окисления добавки кислородом воздуха. Несоблюдение указанных условий может привести к неверной трактовке результатов. Если анализируется состав осадка, то в большинстве случаев интересующее экспериментатора вещество разрушается или претерпевает химические превращения при химическом или анодном растворении, сжигании, равно как и при других способах обработки осадка. Рентгеноструктурный анализ, дающий сведения о фазовом составе, имеет ценность лишь в тех немногих случаях, когда включения составляют не менее 5—10% от общего веса осадка или когда их удается в неизменном виде из осадка извлечь. Характер распределения примесей в осадках может быть установлен с помощью металлографических методов электронная микроскопия (на просвет) дает некоторые возможности для определения количества включений и размера включающхся частиц [34, 35], но опять-таки не дает сведений об их составе. Косвенно о составе включений можно судить по данным радиохимического анализа, если в состав добавки вводятся по-разному меченные молекулы. [c.117]


Смотреть страницы где упоминается термин Электролиз косвенные методы: [c.253]    [c.45]    [c.299]    [c.175]    [c.288]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.297 ]




ПОИСК







© 2025 chem21.info Реклама на сайте