Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горение стадии

    Как мы уже отмечали, превращения глюкозы в организме представляют собой в конечном счете ту же химическую реакцию, что и ее сгорание на воздухе. Ясное дело, никакого горения внутри организма нет. Иначе не только большая часть энергии бесполезно рассеялась бы в виде тепла, но и организм погиб бы от перегрева. Однако такое горение происходит фактически непрерывно внутри каждой клетки. Этот процесс представляет собой цепь по крайней мере 22 химических реакций или стадий. Он называется клеточным дыханием, (см. рисунок на с. 253) [c.254]


    Механизм химических реакций при этих способах сжигания топлива существенно различается. В первом случае сгорание является следствием реакций, протекающих как во фронте пламени, так и в зоне непосредственного контакта свежей смеси с фронтом пламени. Пламя является своего рола реактором, в котором происходит химическое превращение горючей смеси в конечные продукты сгорания. Во втором случае горячее пламя возникает на завершающей стадии процесса горения. Основные химические реакции протекают в большом объеме смеси до момента появления пламени. В этом случае горячее пламя, естественно, не может оказывать влияния на протекающие в смеси предпламенные процессы.  [c.113]

    Процесс горения жидкого топлива проходит следующие стадии смешение капель топлива с воздухом, подогрев и испарение, термическое расщепление капель, образование газовой фазы, ее воспламенение и сгорание. Горение можно ускорить, повышая температуру и давление смеси и турбулизируя ее. Мелкое распыление частиц топлива и равномерное их распределение в воздушном потоке приводят к увеличению активной [c.103]

    В диффузионной стадии горения (вторая стадия) скорость распространения пламени в горючей смеси в большей степени определяется теплопередачей и диффузией, чем скоростью химических реакций. [c.148]

    Складывая последние три термохимические уравнения, отвечающие проведению реакции по стадиям, получим суммарное уравнение горения метана  [c.170]

    В ДВС всех типов в суммарном процессе сгорания топлива можно выделить отдельные периоды (стадии), определяющие общую картину превращения топлива в конечные продукты сгорания (рис. 3.19). Из рисунка следует, что отдельные стадии процесса горения накладываются друг на друга и протекают совместно. Соотношение между разными стадиями и их продолжительность зависят как от условий осуществления горения (тип и конструкция двигателя), так и от свойств топлива —вос- [c.147]

    Время одного акта горения Рис. 3.19. Отдельные стадии единичного акта горения топлива в ДВС. [c.147]

    В первой (кинетической) стадии горения, включающей пред-пламенное окисление и появление очагов воспламенения, скорости химических реакций, которые значительно меньше скоростей диффузии реагирующих компонентов, определяют скорость процесса в целом. В этой стадии скорость и характер превращения ТВС определяются ее физико-химическими свойствами, т. е. в основном зависят от фракционного и углеводородного состава топлива, от наличия в нем присадок, активирующих горение. [c.148]


    Физическая подготовка ТВС (распыление и испарение топлива, смешение с воздухом), а также горение топлива в диффузионной стадии процесса (распространение пламени) в значи- [c.148]

    Этим способом можно переработать в водородсодержащий газ очень тяжелое углеводородное сырье, например, мазут (табл. 32, № 1). При конверсии такого продукта с водяным паром цикл работы аппарата продолжительностью 8—9 мин делится на две фазы. В первой рабочей фазе через слой перегретого катализатора (температура 870° С) пропускают сырье, предварительно тщательно диспергированное в форсунках, и перегретый пар. Во второй фазе нагревания горячие дымовые газы горения мазута нагревают охлажденный на первой стадии слой катализатора. Чтобы при этом одновременно обеспечить выжигание углерода, отложившегося на катализаторе, к горячим дымовым газам подмешивают воздух. Примерно 50% углерода, вводимого в слой катализатора в составе углеводородного сырья, отлагается на катализаторе. Содержание углерода в катализаторе достигает 10%. [c.51]

    При окислении сырья воздухом содержание кислорода в газовой фазе в зоне ввода воздуха составляет 21% (об.). Особенности режима в реакторах (барботаж) исключают образование очага горения непосредственно в зоне реакции, однако для исключения горения и на последующих стадиях — после выхода отработанной газовой смеси из слоя жидкости — необходимо соблюдать в реакторе условия (температуру, перемешивание и др.), обеспечивающие достаточно полное расходование кислорода воздуха [281], или разбавлять отработанные газы инертным газом до взрывобезопасного содержания кислорода. Принцип обеспечения низкого взрывобезопасного содержания кислорода в газах окисления принят для производства окисленных битумов -в соответствии с требованиями техники безопасности содержание кислорода в отработанных газах окисления не должно превышать 4% (об.) для всех битумов, кроме высоко-плавких (рубраксы, лаковые и другие битумы, имеющие т м-пературу размягчения выше 100 °С), для которых без дополнительных обоснований установлена концентрация кислорода, равная 8% (об..). [c.176]

    Для того чтобы избежать выделения азота из продуктов реакции, используют чистый кислород, что несколько удорожает процесс. Водяной газ по этому методу получают в две ступени сначала быстро проводят реакцию полного горения, затем более медленно — окисление избытка метана двуокисью углерода и парами воды, образовавшимися в первой стадии  [c.212]

    Скорость выгорания кокса с поверхности катализаторов при прочих равных условиях зависит от особенностей отложения кокса в стадии крекинга и внутренней поровой структуры частнц. Поэтому регенерационную характеристику катализаторов оценивают в одинаковых условиях закоксовывания и при двух режимах горения кокса—диффузионном и кинетическом. Полученные результаты выражают в виде зависимости приведенной интенсивности горения кокса (в граммах за 1 ч из 1 тг катализатора) от температуры регенерации или других факторов, определяющих скорость горения. [c.169]

    Сложный химический процесс взаимодействия водорода с кислородом, представляемый брутто-уравнением (4.1), имеет ряд специфических особенностей. Его максимальный механизм относительно малоразмерен, а компоненты немногочисленны и имеют достаточно простое строение, что позволяет провести несложные оценки значений всех коэффициентов скорости элементарных стадий. Основные особенности процесса в той или иной мере присущи другим аналогичным процессам, и трудно назвать какую-либо особенность горения газов вообще, не присущую этому процессу в частности. В этом смысле универсальность процесса окисления водорода просто поразительна. Например, в зависимости от начальной температуры и стехиометрии ведущий механизм процесса может быть цепно-тепловым, цепным разветвленным, цепным неразветвленным и даже неценным (тепловым) в зависимости от начального давления процесс может иметь либо гомогенный, либо гомогенно-гетерогенный характер в зависимости от начальных температур и давления процесс может демонстрировать один, два, три и даже четыре предела самовоспламенения ( четвертый предел носит вы-роноденный характер) и т. д. [c.247]

    В опытах по низкотемпературному коксованию угля в слоях, псевдоожиженных воздухом при 430 °С, измеряли расход кислорода. Дэвидсон 1 интерпретировал результаты исходя из скорости переноса кислорода от пузыря к непрерывной фазе и предполагая, что константа скорости реакции практически бесконечна, а пузырь не содержит твердых частиц. При горении в псевдоожиженном слое частицы угля могут быть распределены среди частиц зоны и не все они будут участвовать в реакции. В этом случае кажущаяся константа скорости получается значительно ниже и диффузия с поверхности частицы в этих условиях может оказаться лимитирующей стадией процесса. [c.312]


    Порядок реакции по кислороду для обеих стадий горения оказался равным 0,91—0,95 при 370 °С и 1,02—1,06 при 430 °С, т. е. т 1, что согласуется с данным [31 для алюмосиликатных катализаторов. Таким образом, в исследованном интервале времени и температуры выгорание кокса из цеолита СаА описывается двумя уравнениями  [c.308]

    Для термического обезвреживания сточных вод, состоящего и стадий концентрирования и нолучения сухого остатка, применяют выпарные аппараты, скрубберы, печи, аппараты погружного горения, расн15и ительные сушилки, кристаллизаторы, аппараты с кипящим с юем материала. [c.218]

    Первая стадия горения [c.309]

    Вторая стадия горения  [c.309]

    Аварии технологического оборудования на открытых технологических установках нередко связаны с нарушением герметичности технологических аппаратов и оборудования, беспрепятственным растеканием горючей жидкости, что способствует развитию пожара из небольшого очага горения в пожар, имеющий характер катастрофы и влекущий за собой значительный материальный ущерб, гибель людей и нарушение работы целого предприятия. Противодействовать распространению таких пожаров часто оказывались не в состоянии хорошо оснащенные пожарные подразделения с высококвалифицированным персоналом даже при хорошей организации пожаротущения. В подобных случаях для борьбы с пожарами необходимы автоматически действующие установки тушения пожаров, которые быстро обнаруживают очаг загорания и ликвидируют его в самой начальной стадии развития. [c.6]

    В самом деле, складывая стадии 2—4, получим известное брутто-уравнение реакции горения в виде [8] [c.314]

    Различают горение заранее перемешанной смеси (сероводород, водород, углеводород и т. д.) и горение при раздельном истечении горючего и окислителя, когда лимитирующей стадией процесса является перемешивание (диффузия) двух потоков (водород и хлор, СО и др.). [c.35]

    Условия появления оксида углерода при горении природного газа, содержащего в основном метан, упрощенно можно рассматривать как стадии последовательных превращений метан — формальдегид — оксид углерода—диоксид углерода. При неблагоприятных условиях цепная реакция может оборваться и в продуктах горения будут содержаться оксид углерода и альдегиды. Подобные явления происходят и с другими горючими газами при недостатке окислителя. То же наблюдается при охлаждении зоны горения. [c.292]

    Линейная скорость распространения очага рения по поверхности характеризует стадию развивающегося пожара. От скорости распространения очага зависит время развития пожара. Этот параметр важен при определении продолжительности введения средств тушения и определения их производительности. Ниже приводятся некоторые численные значения линейной скорости распространения очага горения при пожарах, полученные экспериментальным путем. Для твердых сгораемых ма- териалов среднее значение этой скорости равно 0,07 м/с, а для волокнистых веществ во взрыхленном состоянии — 0,12 м/с, горючих жидкостей — 0,5 м/с, толуола —1,7 м/с, массы СКД — 2 м/с, экстракционного бензина — 2,4 м/с. [c.12]

    В промышленных химических печах осуществляется сжигание расплавленной серы. Горение расплавленной серы является сложным химическим процессом, так как реагенты (сера и кислород воздуха), находясь первоначально в относительно устойчивом молекулярном состоянии, прежде чем образовать конечный продукт горения (SOa), проходят многочисленные стадии разрушительных и рекомбинационных процессов. [c.38]

    Процесс горения капли серы зависит от условий сжигания (температура в камере горения и относительная скорость газового потока) и физико-химических свойств жидкой серы (наличие в сере твердых зольных примесей, битумов и др.) и состоит иэ следующих последовательных стадий 1) смешение капель жидкой серы с воздухом 2) прогрев капель серы и их испарение 3) термическое расщепление паров серы 4) образование газовой фазы и воспламенение ее  [c.39]

    Таким образом, учет псевдоравновесного характера протека-пня процесса позволяет качественно объяснить поведение смесей с недостаточным количеством окислителя при горении, если считать, что на первой стадии горения образуется избыточное (по сравнению с равновесным) количество углерода. [c.49]

    Метан можно хлорировать фотохимичесх и или термически в паровой фазе и фотохимически в жидкой фазе. Пр1. проведении хлорирования метана при 360° в длинном канале между графитовыми поверхностями, отстоящими одна от другой на 0,8 мм, горение и пиролиз устраняются. В другом методе фотохимическое хлорирование в паровой фазе ведется при 60° между гладкими некаталитическими поверхностями, отстоящими друг от друга на 5 мм. Получающаяся смесь поступает в облучаемый сосуд с четыроххлористым углеродом, где хлорирование завершается. Для получения частично хлорированных метанов первую стадию можно опустить и реагенты сразу вводят в освещенный жидкий четырех-хлористый углерод [4]. [c.57]

    Жидкое топливо — масло или смола — горит как жидкость только в определенных условиях. При использовании в промышленности форсунок оно горит после превращения в парообразное состояние, так как температура воспламенения его всегда выше температуры кипения. При горении капли масла горят только пары масла, образующиеся над поверхностью капли на расстоянии, на котором концентрация воздуха достигает нижнего предела воспламенения. После смешения паров масла с воздухом наступает горение во всей массе. Получение совершенного распыления жидкого топлива и смешение его с воздухом очень важно по следующим соображениям топливное масло состоит из многоатомных молекул, которые под действием тепла легко расщепляются, при этом, с одной стороны, возникают молекулы с меньшим и большим молекулярным весом, чем молекулы топлива, с другой стороны, выделяется элементарный углерод. Если в этой стадии теплового расщепления одновременно имеется недостаток кислорода, то на холодной поверхности, например, на стене печи, трубы и т. п., откладывается сажистый углерод, часть его смешивается с продуктами сгорания, и если он не уносится, то происходит загрязнение печп. [c.35]

    В соответствии с характером движения газов при сгорании в замкнутом объеме изменяется и скорость перемещения пламени, В начальной стадии горение протекает как бы в условиях свободного расширения газа в неограниченном пространстве. [c.131]

    Процесс термического окисления H S осуществляют в основ — Hof топке, смонтированной в одном агрегате с котлом — утилизато — ром. Объем воздуха, поступающего в зону горения, должен быть строго дозирован, чтобы обеспечить для второй стадии требуемое соотношение SO и H S (по стехиометрии реакции 2 оно должно быть 1 2). Температура продуктов сгорания при этом достигает 1100 — 1300 °С в зависимости от концентрации H S и углеводородов в газе. [c.165]

Таблица 16. Катализаторы ко ЗОНЫ горения и конверсии периодически меняют на обратное, чем устраняют необходимость в самостоятельной стадии подогрева нверсии природного газа с водя1 1ЫМ паром и кислородом Таблица 16. Катализаторы ко <a href="/info/95767">ЗОНЫ горения</a> и конверсии <a href="/info/1580714">периодически меняют</a> на обратное, чем устраняют необходимость в самостоятельной стадии подогрева нверсии <a href="/info/7334">природного газа</a> с водя1 1ЫМ паром и кислородом
    По мнению Хаслама и Рассела (Haslam and Russell [15]), а также Ромпа [16], при обычном горении происходят процессы термического крекинга и начальных стадий окисления. Парафины и нафтены содержат большое количество водорода, они успевают окислиться и сгореть еще до того, как произойдет разложение на более простые углеводороды и элементарный углерод, хотя и такие реакции тоже происходят. Парафины и нафтены сго рают высоким нормальным голубым пламенем без образования копоти. (Увеличение высоты пламени в лампе эквивалентно увеличению подачи топлива). Углеводороды этих групп наиболее пригодны для использования в качестве горючего в обычных керосиновых лампах. [c.463]

    Очевидно, невозможно различить реакции горения, хотя бы даже для небольшого числа составляюш,их какого-либо топлива. К счастью, высокая темиература иламени действует гомогенизи-руюш,е, так что последние стадии горения почти всегда одинаковы. [c.473]

    В соответствии с существующими предложениями процесс окисления кокса протекает через ряд стадий. Первая стадия - хемосорбция кислорода с образованием устойчивого поверхностного углерод-кислородного комплекса. Вторая стадия - разложение комплекса с образованием окиси и двуокиси углерода. Этот процесс может протекать с большой скоростью, при этом необходимо учитывать неравномерность горения кокса во времени. В первый момент времени температура катализатора резко возрастает вследствие быстрого окисления находящихся на поверхности кокса активных веществ, богатых водородом. Подскок температуры может достигать при этом 70-80°С. Перегревы отдельных зон гранулы катализатора зависят от характера распределения кокса по объёму частицы. При невысоком содержании кокса переферия гранулы закоксована гораздо сильнее ядра. При увеличении содержания кокса эта разница быстро уменьшается. Кроме такого, диффузного по своей природе, распределения кокса, имеет место и зональное его распределение - на металле и на носителе катализатора. [c.54]

    Рассмотрим еще один пример применения закона Гесса. Вычислим тепловой эффект реакции сгорания метана СН , зная теплоты образования метана (74,9 кДж/моль) и продуктов его сгорания — диоксида у1лерода (393,5 кДж/моль) и воды (285,8 кДж/моль). Для вычисления запишем реакцию горения метана сначала непосредственно, а затем разбив на стадии. Соответствующие термохимические уравнения будут иметь вид  [c.170]

    Сгорание бензо-воздушных смесей в двигателях представляет собой крайне сложный химический процесс, развивающийся в условиях быстро изменяющихся температур, давлений и концентраций реагирующих веществ. Реакции горения обычно протекают в виде нескольких последовательных стадий и ряда конкурирующих между собой параллел-ьных процессов. Изучение химических пре- [c.53]

    Основные характеристики процесса измельчения. Измельчение — процесс уменьшения размеров кусков твердого материала механическим воздействием — широко используют в различных технологических процессах химической промышленности. В одних случаях, например при измельчении природных материалов, этот процесс относится к начальной или промежуточным стадиям производства, и получаемый измельченный материал направляется на дальнейшую переработку, в других — позволяет получить товарную продукцию (rtpe -порошки, пигменты и др.). Измельчение позволяет увеличить поверхность фазового контакта взаимодействующих масс, что значительно интенсифицирует такие процессы, как растворение, химическое взаимодействие, горение и пр. [c.156]

    После выгорания 30—40 % начального содержания кокса наблюдается перелом на прямой тл п 2 (1,95—2,13). При температуре 350 С перелома нет, так как времени недостаточно для перехода во вторую стадию. Аналогичная картина имеет место на СаА и при других значениях Сн- Порядок реакции по коксу обычно изменяется при увеличении температуры и переходе горения во внутридиффузиопную область [1, 2 . В нашем случае причина, вероятно, другая, поскольку при всех принятых температурах порядок реакции сохраняется (см. рисунок, а). [c.308]

    Касание вблизи точки О (оно не показано на рис. 46) также отвечает критическому условию, но другого типа. Бесконечно малое перемещение от точки касания прямой теплоотвода влево или кривой выделения тепла вправо приводит к резкому падению темиературы, т. е. горючий материал, вместо того чтобы реагировать ири температуре, соответствующей точке Q или более высокой температуре, находится в устойчивом состоянии при температурах, отвечающих точкам иересечення, лежащим левее Ь. В связи с этим Франк-Каменецкий назвал эту точку критической точкой тушения, а Ван-Лун — минимальной температурой горения. Подобно температуре воспламенения, эта температура пе является постоянной величиной, поскольку она зависит от различных факторов. Например, значительное влияние на нее может оказывать скорость газа. В диффузионной области скорость газа, помимо влияния на коэффициент теплопередачи, может также определять положение кривой теило-выделения. Этот эффект обнаруживается в том случае, когда наиболее медленной стадией является ие диффузия внутри пор к поверхности взаимодействия и от нее, а диффузии через гидродинамический пограничный слой к наружной поверхности твердого вещества. [c.174]

    Промышленный аппарат для регенерации алюмосиликатного катализатора в движуш,емся слое. Имеющиеся математические описания регенератора или включают средние для всего аппарата величины, или связывают входные и выходные величины без каких-либо предположений о внутреннем поле концентраций и температур. Так, в работе [23] экспериментальные данные описывались уравнением, связывающим среднюю скорость горения кокса со средними концентрациями кислорода, температурой процесса, концентрацией углеворода на катализаторе. В работе [24] процесс в регенераторе разбит на две стадии адиабатическую и изотермическую, и для одного случая (начальная температура катализатора —450 °С) предложены уравнения, определяющие зависююсть времени регенерации от конечной закоксованности. В работе [25] предложено определять время полной регенерации в различных предельных режимах (кинетическом, внутреннем и внешнедиффузионном) и затем суммировать их для нахождения времени реального процесса, что неоправданно. Авторам [25] пришлось ввести в предлагаемые уравнения эмпирические коэффициенты, чтобы они соответствовали экспериментальным данным. [c.323]

    Горение углеводородов, а также некоторых других горючих (спирты, альдегиды и т. д.) часто осуществляется в две стадии стадию холодно-пламепного горения и стадию горячего пламени. В соответствии с этим самовоспламенение таких смесей также имеет двухстадийный характер, а имепно при впуске смеси в нагретый сосуд по истечении промежутка времени возникает холодное пламя, которое через промежуток времени переходит в обычное горячее пламя. Величины TJ и называют периодом индукции холодного и горячего пламени, причем т всегда оказывается значительно меньше Т1. [c.227]

    Зависимость длиш.1 зоны горения S (I) от давления (р) можно выразить следующим приближенным соотношением 1р = onst. Воспользовавшись соотношением 2Bti (где Т — средняя продолжительность жизни ведущего активного центра, взаимодействие которого является лимитирующей стадией реакции горения D — коэффициент диффузии), представляя [c.229]


Смотреть страницы где упоминается термин Горение стадии: [c.148]    [c.267]    [c.309]    [c.310]    [c.10]    [c.604]    [c.131]   
Термо-жаростойкие и негорючие волокна (1978) -- [ c.345 ]




ПОИСК







© 2025 chem21.info Реклама на сайте