Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Примесей определение ионов металлов

    Определению аммиаката меди мешают ионы металлов, образующие окрашенные аммиакаты, например, кобальт и никель, или труднорастворимые гидроксиды железа, свинца, алюмнния. Для устранения мешающего действия элементов приме-ну[ют маскирующие комплексообразователи. [c.69]

    Примем, что комплекс металла МеЕ"" восстанавливается необратимо на капельном электроде или не подвергается восстановлению в доступном интервале потенциалов. Для определения константы устойчивости этого комплекса следует найти ион другого металла Ме"" , который восстанавливается обратимо и образует с лигандом Е комплекс с известной большой константой [c.406]


    Измерение потенциала между двумя электродами при определении металла дает концентрацию свободного катиона, находящегося в равновесии с металлом —равновесную концентрацию ионов металла. Прим. ред.. Если ионы металла связываются в комплексы или соединения, не полностью ионизированные, тогда данные потенциометрического измерения будут отвечать только той доле растворенного металла, которая сохранилась в виде простых катионов. Так, например, если раствор сульфата меди содержит аммиак, то потенциал медного электрода значительно повышается. Объясняется это тем, что большая часть меди связывается в комплексный ион Си(МНз)4 " и в растворе остается небольшая концентрация свободных ионов Сц2+. [c.52]

    В некоторых случаях, однако, более электроотрицательные ионы могут участвовать и в катодном разряде, если концентрация их достигает определенной величины. В этом случае потенциал более отрицательного иона (примеси) приблизится к потенциалу разряда основного иона, т. е. к общему потенциалу катода. Восстановление отрицательного цона — примеси совместно с основным ионом становится особенно реальным, когда примесь осаждается при значительно меньшей поляризации, чем основной металл. [c.248]

    В современной научной литературе понятие комплекс используют для обозначения молекулярных органических комплексов, ионных ассоциатов и собственно комплексов металлов — координационных соединений, в которых можно выделить центральный атом и лиганды. Понятие константы устойчивости как константы образования комплекса из составляющих его компонентов используется для описания всех типов комплексов, и хотя данная книга и посвящена только комплексам металлов, методы определения состава и устойчивости, описанные здесь, применимы и для исследования комплексов остальных типов. — Прим. ред. [c.16]

    Некоторые соединения рубидия и цезия используют в медицине и микрохимическом анализе (определение свинца и некоторых других металлов), в ионных двигателях. В последние годы ведутся исследования по их применению в качестве катализаторов.— Прим. ред. [c.547]

    См. А. К- Бабко, Влияние посторонних ионов на колориметрическое определение металлов, Заводская лаборатория, 14, 1028 (1948). (Прим. ред.) [c.84]

    Определение влияния на силу тока коррозионного элемента соотношения площадей анодной и катодной зон представляет простой и удобный в экспериментальном отношеггии способ проверки электрохимического механизма коррозии металлов в растворах электролитов. Характер такого влияния может быть количественно выражен, исходя из основных положений кинетики электрохимических процессов, протекающих на аноде и катоде коррозионного элемента при его работе. Наобходимо, однако, сделать определенные допущения относительно конкретных условий работы коррозионного элемента. Если, в частности, полностью исключить диффузионные ограничения, то для металлов с небольшим током обмена по собственным ионам общее условие стационарности определяется формулой (9.6), в которое входит величина анодной зоны поверхности и катодной зоны 5 . Для последу ющего целесообразно принять за единицу сумму поверхности анодной и катодной зон, положив, что = Вд, 5 = 6 , и что 0 + 0 , = 1. При этом Вд и В соответственно будут иметь смысл безразмерной величины доли поверхности анода и катода. Примем во внимание, что [c.255]


    Лингейн [108] предложил полярографйческуро методику для определения свинца, меди, олова, никеля, цинка с приме-йе нием последовательного удаления примесей путем потенциостатического электролиза. Проблему одновременного определения таллия и свинца решил Мейтес [106], который применял сочетание полярографического и кулонометрического методов. Смит и Тейлор [42] удаляли свинец из растворов, содержащих ионы других металлов, путем осаждения его на ртутный катод с последующим повторным электролитическим растворением, завершающим анализ. [c.57]

    В литературе встречается большое количество понятий — синонимов, формально характеризующих валентное состояние атома степень окисления, состояние окисления, зарядность, значность, электрохимическая валентность. Для формальной характеристики валентности мы примем степень окисления. При определении степени окисления предполагают, что степень окисления кислорода равна —2, а водорода +1. Исключением являются перекисные соединения, в которых кислород может иметь различные степени окисления, меньшие чем —2, и гидриды металлов, в которых степень окисления водорода равна —1. Таким образом, степень окисления железа в РегОз равна +3 и +2 в окисле РеО. Степень окисления брома в НВг —1, а серы в НгЗ —2. Степень окисления алюминия в А1С1з определяется по иону хлора, который, являясь кислотным остатком соляной кислоты, имеет степень окисления —1, и поэтому степень окисления алюминия равна +3. В соединении К4рерб степень окисления железа равна +2, так как степень окисления калия +1, а фтора —1. [c.48]

    Примеси различных металлов в органических и биологических образцах отделяли методом ионного обмена. Медь из минеральных масел сорбировали на катионите в Н+-форме из смеси (1 1) образца и изопропилового спирта (для лучшей смешиваемости иногда добавляли небольшое количество бензола), вымывали 10%-ной серной кислотой и водой и определяли спектрофотометрически до 10 % [196]. Примесь меди (- 10 %) в молоке сорбировали на катионите в Н+-форме с последующим вымыванием 6%-ной НС1 и полярографическим определением [197]. В большинстве случаев, однако, органические и биологические образцы сначала озоляют, а затем применяют ионный обмен [198-200]. [c.114]

    Бывают случаи, когда определенно пористые покрытия катодного металла-дают суш,ественную защиту стали. Пористые свинцовые покрытия эффективны в промышленных атмосферах (они менее эффективны в сельских или морских атмосферах). Ржавчина вообще появляется в порах вскоре уже после выдержки, но потом коррозия перестает развиваться вообще считают, что поры закупориваются сульфатом свинца [112]. Если мы примем идею закупоривания пор сульфатом свинца, то оказывается, что вначале оба металла подвергаются разрушению. Таким образом, какая бы ни была полярность у электродов в ячейке Fe/Pb, ни свинец на этой стадии не является достаточно анодным, чтобы защитить железо, ни железо достаточно анодным, чтобы защитить свинец. В действительности же свинец слегка аноден по отношению к железу, когда на нем конденсируется влага, содержащая серную кислоту. Если образуется непрерывный осадок сульфата свинца, разрушение свинца прекращается, но если образуется непрерывный осадок кристаллов (опыт химической промышленности показывает, что это может иногда случиться), осаждение сульфата свинца на нем будет поддерживать концентрацию РЬ " ниже, чем в случае действия влаги, не содержащей ионов SQ2-, и потенциал будет смещаться в отрицательную сторону сомнительно, смещается ли он достаточно далеко для свинца, чтобы обеспечить катодную защиту железа. Очень тонкое пористое покрытие олова, нанесенное на сталь перед окрашиванием, удлиняет период до появления коррозии (стр. 520), несмотря на то что олово является катодом по отношению к стали при обычных атмосферных условиях. Бриттон предложил разумное объяснение отсутствию интенсивного разрушения он считает, что краска уменьшает эффективность действия оловянного покрытия в качестве катода, поскольку и как показал Мэйн (стр. 501), движение ионов через связующее вещество краски происходит нелегко. Если только участками поверхности, доступными для катодной реакции, являются стенки пор, пронизывающих чрезвычайно тонкое покрытие, катодная поверхность будет, вероятно, меньшей, чем анодная поверхность, и нет основания ждать интенсивного разрушения [113]. Имеется другое возможное объяснение. Коррозия стали, которая начинается с чувствительных точек, может задерживаться или предотвращаться если поры в оловянном покрытии случайно совпадают с чувствительными точками на стали, то можно ожидать, что пористое оловянное покрытие будет уменьшать вероятность зарождения коррозии. [c.581]



Смотреть страницы где упоминается термин Примесей определение ионов металлов: [c.514]    [c.263]    [c.551]    [c.91]   
Аналитическая химия азота _1977 (1977) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Определение иония

Примесей определение



© 2025 chem21.info Реклама на сайте