Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детектор специфический

    Количественное соотношение достаточно точно лишь при работе в линейном динамическом диапазоне детектора и при разделении химически весьма сходных веществ. Оно справедливо, когда для одинаковых концентраций различных веществ регистрируются пики с одинаковой площадью. Но в большинстве газо-хроматографических анализов это условие не выполняется. Точные количественные данные, рассчитанные по площадям отдельных пиков, получают, вводя специфические для каждого вещества поправки к площади пиков. Поправочные коэффициенты имеют разное значение для одинаковых веществ при работе с детекторами, различающимися по принципу измерения. В литературе приведены поправочные коэффициенты, с учетом особенностей аппаратуры, для большого числа вещества. Найденные по хроматограмме площади пиков умножают на эти величины. [c.76]


    Особый интерес среди электрохимических детекторов представляют амперометрические (вольтамперометрические) детекторы, Преимущества этих детекторов состоят в том, что они имеют достаточно высокую чувствительность, в ряде случаев селективны, а их динамические характеристики мало зависят от конструкции ячейки. При этом имеется возможность изменения селективности отклика за счет варьирования потенциала рабочего электрода и придания ему специфических свойств с помощью химической мо- [c.578]

    Характер аналитических задач, решаемых с помощью важнейшего из этих методов — инструментальной или регистрационной колоночной ЖХ,— определяется природой используемых стационарной и подвижной фаз, а также принципом детектирования элюатов. Универсальные детекторы (рефрактометрический, диэлькометрический, транспортные и др. [109, 111, 2541) использовались для количественного анализа самых различных ГАС (аминов [255, 256], порфиринов [257], жирных кислот [258, 259], фенолов [260], сернистых соединений [261 ]) в условиях адсорбционной или координационной хроматографии, а также для определения молекулярно-массового распределения высокомолекулярных веществ [69, 109, 262, 2631 при эксклюзионном фракционировании или разделении на адсорбентах с неполярной поверхностью, например, на графитирован-ных углях. Качественная идентификация элюируемых веществ в этих случаях проводится по заранее установленным параметрам удерживания стандартных соединений и при изучении смесей неизвестного состава часто затруднена из-за отсутствия таких стандартов. Групповая идентификация ГАС отдельных типов существенно облегчается при использовании специфических селективных детекторов спектрофотометрических (УФ или ИК), флю-орометрического [109, 111, 254 и др.], пламенно-эмиссионного [264], полярографического [111], электронозахватного [265] и др. [c.33]

    Наряду с детекторами, принцип действия которых был рассмотрен в I гл., в газо-жидкостной хроматографии применяется ряд детекторов, специфически реагирующих на любые органические вещества или же на органические вещества с определенной функциональной группой. К их числу относятся ионизационные детекторы, детекторы электронного захвата, термоионные, спектрофотометрические и некоторые другие детекторы. [c.186]

    Подвижная фаза (растворитель) является одной из составляющих системы жидкость — жидкость, ответственной за процесс разделения в распределительной хроматографии. Поэтому, кроме обычных требований, предъявляемых к растворителям в других видах жидкостной хроматографии (химической инертности по отношению к используемым неподвижным фазам, носителям и компонентам разделяемых смесей, низкой вязкости, чистоты, совместимости с детекторами, доступности и дешевизны), в распределительной хроматографии к подвижной фазе предъявляются и некоторые специфические требования. [c.66]


    Морроу и сотр. [55] описали одну интересную конструкцию газохроматографического пламенно-фотометрического детектора, специфического на кремний . Действие этого детектора основано на излучении в пламени кремнийсодержащих соединений при 251,6 нм. Для иллюстрации работы детектора авторы использовали ТМС-эфиры нормальных спиртов от С1 до С и трех [c.51]

    Пики, получаемые в так называемых специфичных детекторах, не отражают структурных отличий компонентов. Эти детекторы реагируют только на одну группу, присутствующую во всех производных. При регистрации метиловых эфиров ДНФ-аминокислот электронозахватным детектором наблюдали лишь очень небольшие зависящие от структуры изменения сигнала [54]. Этот детектор специфически реагирует на ДНФ-группу аминокислотных производных. Другой метод измерения, доступный лишь в исключительных случаях, основан на общем превращении различных аминокислот в одно соединение, например метан [3]. [c.336]

    Сорбционные свойства нефтяных пеков изучали методом обращенной газовой хроматографии на хроматографе марки ЛХМ-8МД с детектором по теплопроводности при температурах 30-50"С. В качестве органических растворителей использовали гексан, бензол, метанол, этанол, ацетон, которые моделируют определенные типы межмолекулярных взаимодействий. На пеках лучше адсорбируются спирты за счет образования водородных связей, бензол, так как проявляет специфическое сродство, обусловленное п-взаимодействием. [c.196]

    Этот простейший вид аналитической реакционно газовой хроматографии не требует каких-либо переделок или изменений стандартной газовой схемы хроматографа при работе с детектором по теплопроводности . Следует только предусмотреть подключение к линии сброса газового потока в атмосферу специальной распределительной гребенки, связанной с серией стеклянных микрореакторов — небольшого размера пробирок или пенициллиновых склянок. В каждую пробирку (склянку) перед началом опыта помещают свежеприготовленный раствор специфического группового реагента. Пробирки соединяют с распределительной гребенкой с помощью стальных капилляров (медицинских игл) таким образом, чтобы при выполнении анализа поток газа из [c.190]

    При точных количественных измерениях в значения площадей пиков вносятся поправки в соответствии со специфическими для каждого вещества факторами, характеризующими чувствительность данного типа детектора к этим веществам (разд. 3). [c.292]

    Идентификация с помощью специфических детекторов [c.355]

    При количественном анализе веществ, сильно отличающихся по своей структуре, нужно ввести фактор корректуры площадей (Л), который отражает специфические особенности детектора для данного соединения  [c.100]

    Наиболее универсальными детекторами в газовой хроматографии являются катарометр и пламенно-ионизационный детектор (ПИД). Для специфического детектирования соединений все шире применяется масс-спектрометрический детектор (ГХ-МС). Кроме того, используют и другие принципы детектирования, обеспечивающие селективность или высокую чувствительность. Наиболее важные способы детектирования описаны ниже. [c.250]

    Спектрометр для атомной эмиссии — это спектральный прибор, который пространственно диспергирует свет, испускаемый источником излучения, выделяет специфические спектральные полосы, содержащие линии определяемого элемента или избранную область фона, и измеряет интенсивность линии или фона с помощью одного или нескольких детекторов. Спектрограф отличается от спектрометра тем, что вся область спектра, доступная в данной системе, снимается на фотографическую пластинку. При использовании спектрографа качественный анализ проводят, проверяя наличие нескольких линий конкретного определяемого элемента, а количественный анализ выполняют, измеряя интенсивности линий с помощью микрофотометра. [c.24]

    В некоторых случаях индикаторные радионуклиды не испускают подходящего 7- или рентгеновского излучения, и, следовательно, после специфического выделения необходим счет /3-излучения. Предпочтительными детекторами [c.112]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]


    Традиционные методы определения ММР ПИБ фракционирование полимерных продуктов, гель-хроматография и универсальный метод на основе совмещения жидкостного хроматографа со специфическим детектором на ненасыщенные соединения с методом АДС. [c.252]

    Если снять хроматограммы одной и той же пробы на детекторе, показания которого пропорциональны массе вещества, и на детекторе, обладающем селективной чувствительностью к отдельным веществам, то можно определить специфические поправочные коэффициенты этих двух детекторов для отдельных хроматографических пиков. Сопоставление этих факторов с табличными значениями позволяет сделать вывод об имеющихся функциональных группах и гетероатомах. Для капиллярных колонок может быть с успехом использована комбинация пламенно-ионизационного детектора, чувствительность которого определяется числом атомов углерода, содержащихся в молекуле, с электронозахватным детектором (ср. Оке, Хартман и Димик, 1964). В сочетании с капиллярными колонками в качестве специфических детекторов применяли фосфорный и галогенный пламенно-ионизационные детекторы (Кармен, 1964) и кулонометрический детектор, реагирующий на фосфор, серу и галогены (Коулсон и Каванаг, 1959 ср. также Пирингер, Татару и Паскалау, 1964). [c.356]

    Электронозахватный детектор, специфически реагйрующий на некоторые кислородные функции, атомы Галогенов и дисульфид-ные группы, применялся при ГЖХ анализе фенолов (в виде хлор-ацетатных производных [297]) и при идентификации низших дисульфидов в сырой нефти [17]. [c.35]

    Из числа детекторов, специфических к химическим элементам и пригодньгх для надежной идентификации целевых компонентов в сложных смесях химических соединений различных классов, в газовой хроматографии наиболее популярны системы, основанные на атомной спектроскопии [4]. Детектирование ведется на длине волны, специфичной для данного элемента [4, 11]. [c.444]

    Применение газоадсорбционной хроматографии (ГАХ) для разделения неуглеводородных соединений, как правило, затруднено из-за высокой адсорбируемости ГАС и необходимости использования недбнустимо больших температур для их десорбции. В связи с зтим в анализе компонентов нефти наиболее часто используются методы газо-жидкостной хроматографии (ГЖХ). Благодаря выпуску обширного лабора стационарных фаз, созданию высокочувствительных универсальных и специфических селективных детекторов [163], легкости варьирования условий проведения процесса эти методы позволяют четко разделять соединения различной химической природы. При этом используются самые малые различия в их свойствах, даже обусловленные оптической изомерией [164, 165]. Подбирая соответствующие стационарные фазы в газохроматографических колонках, можно реализовать любые принципы удерживания (сорбции). [c.21]

    В последнее время все более широкое распространение получают специфические детекторы. Детектор электронного захвата в основном применяется для анализа малых примесей веществ, содержащих атомы с большим сродством к электрону, такие, как галогены, кислород, азот. При ионизации газа-носителя в детекторе образуется большое количество электронов, которые взаимодействуют с анализируемым веществом, что проявляется в уменьшении начального тока детектора. Чувствительность детектора зависит от природы и числа атомов, обладающих сродством к электро ну. Термоиопный детектор основан на ионизации в пламени солей щелочных металлов. Детектор хорошо анализирует соединения, содержащие фосфор. П л а м е н н о - ф о р-метрическнй детектор основан на измерении свечения водородного пламени. Детектор весьма чувствителен к фосфору и серусодержащим соединениям. [c.300]

    При анализе смесей соединений с очень разнообразными функциями селективное выделение или превращение определенных веществ приводит лишь к неполному решению задачи анализа, так как с помощью данной реакции выделяют лишь немногие компоненты такой смеси. В таких случаях имеет преимущество очень простой метод, разработанный Уолшем и Мерритом (1960), а также Дюбуа и Монкменом (1961) и усовершенствованный в аппаратурном отношении Касу и Кавалотти (1962),— метод качественного группового анализа после газохроматографического разделения. Принадлежность отдельных компонентов на хроматограмме к данной группе веществ в этом методе устанавливается при помощи цветных реакци выходящих из колонки соединений со специфическими реактивами. Необходимая для этого аппаратура отличается от обычно применяемых приборов только тем, что после детектора присоединяется простое устройство для распределения компонентов по различным реакционным сосудам. Вещества, выходящие из детектора, проходят сначала через присоединенный при помощи короткой [c.250]

    Специфические поправочные коэффициенты имеют разные значения д, гя одинаковых веществ при работе с детекторами, различающимися по принципу измерения. Так, например, при применении пламенно-ионизацион-ного детектора поправочные коэффициенты зависят от структуры молекул компонентов и числа имеющихся в них атомов углерода (см. разд. 5). Чувствительность ячеек для измерения теплопроводности определяется значениями теплопроводностей чистых веществ и газа-носителя. Для газов1.гх весов (плотномеров) имеет место простая связь между молекулярным весом и регистрируемой площадью пика вещества. По Филлипсу (1961), это отношение имеет следующий вид  [c.296]

    Результаты, полученные Эттром и Эйвериллом (1961), дают основание считать по крайней мере для углеводородов, что деление потока не искажает состава пробы, даже если проба будет содержать вещества, сильно различающиеся по температурам кипения (в рассмотренном примере 126 и 288 ). Прежде чем распространять этот вывод также и на другие классы веществ, следует точно определить специфическую чувствительность ионизационных детекторов к этим веществам. [c.342]

    Ряд работ, например Халаса и Шнейдера (1961), Руайхеба и сотр. (1962), Уокера и Альберга (1963), показал, что на капиллярных колонках с ионизационными детекторами также возможен точный количественный анализ. Эттр и Эйверилл (1961) доказали постоянство отношения разделяемых потоков в делителе потока, расположенном после дозатора. Специфические поправочные коэффициенты, характеризующие чувствительность детекторов к отдельным компонентам, для ионизационных детекторов сильнее [c.355]

    Детекторы подразделяются на селективные и универсальные. Селективные детекторы способны зафиксировать элюирование интересующих исследователя веществ, обладающих специфическими свойствами, на фоне многих других компонентов, такими свойствами не обладающих. Эти детекторы (флюоресцентный, электрохимический и др.) находят широкое применение в анализе следовых количеств лекарственных препаратов в биологических образцах, микропримесей, биогенных аминов. Универсальные детекторы должны реагировать на элюирование любых веществ вне зависимости от того, обладают они какими-то особыми свойствами или нет. Такие детекторы находят широкое применение в органической химии, нефтехимии, фармацевтической, химической, медицинской промышленности, биологических науках. [c.149]

    Многие органические соединения, особенно алифатического ряда, не проявляют электрохимической активности в обычных условиях и не детектируются амперометрическими детекторами. Этот факт наряду с выбором условий детектирования (потенциала электрода, растворителя, pH раствора и др.) в значительной степени определяет селективность отклика амперометрических детекторов при анализе матриц сложного состава, одновременно ограничивая их использование в ВЭЖХ. Тем не менее, существуют возможности для расширения сферы применения амперометрических детекторов. С этой целью применяют химически модифицированные электроды. При этом достигаются две основные цели повышение чувствительности детектора за счет ускорения медленных редокс-реакций и увеличение избирательности отклика при нанесении на поверхность электрода веществ, специфически взаимодействующих с определяемыми соединениями. [c.569]

    ФПИК-детектор в сочетании с жидкостной хроматографией - еще один гибридный метод, позволяющий получать в режиме on-line специфическую информацию о молекулах разделяемых соединений. По сравнению с ЖХ-МС интерфейсы значительно проще, поскольку отсутствует необходимость введения пробы в спектрометр, работающий под высоким вакуумом. Кроме того, информация о функциональной группе может быть получена очень простым путем - регистрацией поглощения при характеристической частоте. [c.630]

    Методы газовой хроматографии (ГХ) и высокоэффективной жидкостной хроматографии (ВЭЖХ) позволяют за короткое время проводить разделение, идентификацию и количественное определение состава сложных смесей. Благодаря сочетанию высокоэффективных разделительных систем с чувствительными, селективными и специфическими детекторами, такими, например, как диодноматричный детектор (ДМД) в видимой и УФ-областях спектра, масс-спектрометрия и ИК-фурье-спектроскопия (ИКФС) удается надежно идентифицировать отдельные вещества. Приборное оформление этих методов настолько хорошо развито, что почти всегда удается автоматизировать проведение хроматографических анализов. [c.5]

    Популярность масс-спектрометров как детекторов для ГХ в перв то очередь вызвана тем, что пспользованпе гибридного метода позволяет получать большое количество специфической информации. По сравнению с другими детекторами масс-спектрометр более универсален, а получаемая с его помощью информация характеризуется большей специфичностью. В отличие от других детекторов, чувствительных лишь к определенным классам соединений (так, электронозахватный детектор чувствителен только к галогенсодержащим соединениям, а пламенно-ионизационный — к углеводородам), масс-спектрометр позволяет детектировать любые органические соединения [10-12]. Различие между масс-спектрометром и другими ГХ-детекторами состоит в том, что в последнем детектирование осуществляется в соответствии с массой, т. е. с тем физическим свойством, которое присуще всем органическим соединениям. [c.82]


Смотреть страницы где упоминается термин Детектор специфический: [c.99]    [c.99]    [c.4]    [c.109]    [c.99]    [c.155]    [c.200]    [c.145]    [c.301]    [c.262]    [c.265]    [c.203]    [c.225]    [c.484]    [c.172]    [c.25]    [c.253]   
Руководство по газовой хроматографии (1969) -- [ c.355 , c.356 ]

Руководство по газовой хроматографии (1969) -- [ c.355 , c.356 ]




ПОИСК





Смотрите так же термины и статьи:

специфическая

специфическая специфическая



© 2024 chem21.info Реклама на сайте