Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотоионизация

    В случае УФС, как мы увидим, разрешение таково, что можно легко регистрировать колебательную структуру, связанную с электронным состоянием ионизуемой молекулы. Аналогия с электронной абсорбционной спектроскопией очевидна. В эксперименте УФС фотоионизации с испусканием электрона сопутствует электронный переход из основного состояния исходной молекулы в основное электронное состояние (иногда в возбужденное состояние, см. ниже) ионизованной молекулы. В электронной абсорбционной спектроскопии колебательная структура наблюдается для возбужденного электронного состояния, а в УФС — для электронного состояния ионизованной молекулы. Тогда явная форма уравнения (16.23) для энергии, необходимой для освобождения электрона из молекулы, выглядит как [c.332]


    По сравнению с диамагнитными соединениями парамагнитные соединения характеризуются более сложными спектрами УФС и РФС. Молекула кислорода имеет два неспаренных я -электрона. Спектр УФС кислорода приведен на рис. 16.11. Фотоионизация электрона с частично заполненной разрыхляющей молекулярной Лд(2р)-орбитали характеризуется первым пиком в спектре УФС, реализуется только одно ионное состояние. В то же время фотоионизация электрона с одной из других заполненных молекулярных орбиталей приводит в каждом случае к двум электронным состояниям иона О2. Таким образом, если электрон удаляется с заполненной связывающей я -орбитали, то на ней остается неспаренный электрон, спин которого может быть параллелен или антипараллелен спинам двух неспаренных электронов, находящихся на разрыхляющей я -орбитали. Если спин оставшегося электрона параллелен спинам электронов на л -орбитали, то мы будем иметь три неспаренных электрона, полный спин 5 = 3/2 и электронное состояние лля молекулы О . При другом направлении спина электронным состоянием молекулы 02 будет П . Состояния П и П молекулы О2 имеют различные энергии, и, таким образом, ионизационный пик я -орбитали расщепляется. В табл. 16.4 приведены наблюдаемые характеристики молекулы О2, полученные из спектров УФС и РФС. [c.343]

    Тяжелыми являются все ионы, масса которых больше, чем масса ядра гелия ( Не). Ионы образуются из нейтральных молекул или атомов при ионизации электронным ударом, фотоионизации, химичес- [c.104]

    В случае РФС наблюдаемая полуширина линии (полная ширина на половине высоты) значительно вьппе, чем в случае УФС. Фотоионизация электронов оболочки приводит к возбужденным состояниям, время жизни которых значительно короче, чем в случае УФС, поскольку время жизни пропорционально —энергии фотоионизационного перехода. Данные по поглощению и испусканию рентгеновских лучей [33] показывают, что присущая внутренним атомным уровням щирина линий снижается с уменьшением атомного номера и может быть порядка [c.335]

    Метод селективной фотоионизации наиболее пригоден для разделения изотопов тех элементов, которые трудно вводить в подходящие молекулярные соединения (щелочные, щелочноземельные и трансурановые элементы), а также для разделения короткоживущих радиоактивных изотопов. [c.179]

    Оба рассматриваемых метода могут быть использованы для очистки веществ от молекулярных примесей в технологии особочистых материалов. Схема установки для двухступенчатой селективной фотоионизации показана на рис. 8.1. [c.180]

    Необходимое для фотоионизации минимальное значение энергии определяет порог поглощения, как это показано на рис. 5 9 для концентрации азота Ш - см - и при температуре 10 эВ (электрон-вольт — единица энергии, используемая для обозначения температуры = -кТ (I эВ- Пб ООО К) и волнового числа Е-=/гс (1 эВ= [c.487]


    Т. е. поляризуемость алкильного радикала имеет промежуточное значение между поляризуемостями соответствующих молекул парафина и олефина. Значения для последних близки между собой и приведены в справочной литературе [162]. Методами электронного удара, фотоионизации и другими были получены согласующиеся значения потенциалов ионизации для многих алкильных радикалов [6], которые мало отличаются от потенциалов ионизации родственных молекул. Значения энергий диссоциации даны в работах [6, 91. Значение колебательной константы со [161], входящей в функцию Морзе (7.5), мало отличается от валентного колебания соответствующей С—С- или С—Н-связи. Используя молекулярные данные, известные для алкильных радикалов, авторы работ 159, 160] рассчитали + и / + для реакций рекомбинации одинаковых радикалов [c.88]

    Экспериментально полученные характеристики короны зависят от двух противоположных эффектов во-первых, чем плотнее газ, тем становятся короче средний свободный пробег, это затрудняет ионизацию и увеличивает потенциал искрового перекрытия во-вторых, усиленная фотоионизация и снижение ионной диффузии способствует распространению стримера от анода через искровой промежуток, а затем второй эффект а при критическом давлении происходит искровой пробой. [c.495]

    Рекомбинационная замедленная флуоресценция наблюдается н жестких средах, когда в результате фотоионизации (однофотонной или ступенчатой) образуются электроны, захватываемые ловушками. В результате диффузии электроны могут рекомбинировать с нонами, давая синглетные возбужденные состояния  [c.100]

    Прн использовании в качестве сенсибилизатора трифениламина поглощение второго кванта света приводит к фотоионизации молекулы  [c.152]

    Непосредственная диссоциация связи О—Н путь (2)] идет с меньшим квантовым выходом, чем процесс фотоионизации анионов [путь (1)]. Образование возбужденных анионов фенолов в нейтральной среде связано с уменьшением рК в возбужденном состоянии. Максимумы и коэффициенты экстинкции спектров поглощения феноксильных радикалов приведены в табл. 17. [c.174]

    Частично из-за потребности в монохроматическом излучении возникли два раздела фотоэлектронной спектроскопии. Рентгеновская фотоэлектронная спектроскопия, сокращенно обозначаемая как РФС или ЭСХА (электронная спектроскопия для химического анализа), использующая рентгеновские лучи в качестве источника ионизирующего излучения, изучает в основном электроны оболочки (т.е. невалентные электроны). Создание этого метода приписывают Сигбану и сотр. [27]. В ультрафиолетовой фотоэлектронной спектроскопии (УФС) используют ультрафиолетовое излучение, имеющее более низкую энергию, и, таким образом, исследуют энергии связи валентных электронов. Обязанная своим развитием главным образом Тернеру и его сотрудникам [28], УФС предназначалась не только для измерения энергий связывания валентных электронов, но и для наблюдения за возбужденными колебательными состояниями молекулярного иона, образующегося в процессе фотоионизации. [c.331]

    Не рассматривая подробно, следует указать только, что величина ф или пренебрежимо мала (энергия отдачи атома или молекулы при испускании фотоэлектрона, за исключением фотоионизации водорода), или может быть учтена как постоянная для данного прибора (работа выхода материала спектрометра). Работу выхода каждого образца обычно нет необходимости знать, поскольку образец находится в электрическом контакте со спектрометром. Таким образом, при измеренной кин и известной частоте монохроматического излучения V непосредственно определяется энергия связи электрона [c.136]

    При фотоионизации или возбуждении электрона с какой-то оболочки (например, К или I) каким-либо облучением в этой оболочке образуется вакансия ( дырка ). Различные по характеру релаксационные процессы, схематично показанные на рис. VI.1,6, могут привести к заполнению данной вакансии. [c.138]

    Величины потенциалов ионизации, т. е. наименьших потенциалов, необходимых для удаления электрона из атомной системы — атома, молекулы, иона, радикала, определяются экспериментально методами электронного удара, фотоионизации или спектроскопическим методом. [c.10]

    Возможно даже, что более много обещающей и интригующей тонкой структурой в спектрах РФС является структура, связанная с процессом встряхивания . Было бы очень удивительно, если бы все, что происходило при столкновении у-кванта очень высокой энергии с молекулой, ограничивалось бы фотоионизацией одного валентного электрона или электрона оболочки. Одновременно с фотоионизапией электрона может происходить возбуждение одного из оставшихся электронов до первоначально свободной орбитали. Это явление называется встряхиванием . Таким образом, структура пиков РФС с более высокой энергией и низкой интенсивностью, обусловленных электронами оболочки, может быть использована для изучения различных электронных переходов, происходящих одновременно с фотоионизацией. Эти пики-сателлиты обнаружены в диапазоне энергий, превьинающих на величину до 50 эВ энергии связей, характеризующие основные пики. Очевидно, электронное поглощение при 50 эВ ( = 404 ООО см = 25 нм) представляет собой поглощение с очень высокой энергией в области вакуумного ультрафиолета. [c.353]

    Фотоионизация —распад, молекул под действием света на ион-радикалы или ион-радикал и электрон, например  [c.204]

    Следует отметить, что флуоресценция, фосфоресценция и фотохимические процессы также объясняются электронными переходами. Так, при фотохимических процессах в химическом взаимодействии участвуют молекулы в возбужденном состоянии, которые обусловливают их реакционную способность. Благодаря использованию электронных спектров поглощения появилась возможность определять ионизационные потенциалы молекул, которые можно вычислить из длин волн, необходимых для возникновения эффекта фотоионизации. Наиболее общее практическое приложение спектроскопии и в первую очередь электронной спектроскопии — опре- [c.163]


    Независимо от мультиплетности возбужденного состояния, первичные фотохимические процессы могут носить самый различный характер диссоциация на радикалы, внутримолекулярный распад на молекулы, внутримолекулярные перегруппировки, фотоизомеризация, фотоприсоединение, фотодимер изация, фотоионизация, внутренний или внешний перенос электрона с образованием ионов, наконец, с молекулами других веществ возбуждения молекула может осуществлять фотосенсибилизированные реакции передачей своей энергии акцептору. [c.283]

    Энергию ионизации можно определить и другими способами, в частности, методами электронного удара и фотоионизации. Энергия ионизации обычно выражается в электрон-вольтах ее часто называют ионизационным потенциалом, имея в виду разность потенциалов (выраженную в вольтах), под действием которой электрон приобретает энергию, равную энергии ионизации. [c.52]

    Для определения Т используют методы, основанные на торможении электронов в электростатическом поле, регистрацию малых электронных потоков производят с помощью фотоэлектронных умножителей. Результаты получают в виде графика распределения фотоэлектронов по энергиям. Пики (линии) на графике соответствуют фотоионизации электронов с различных уровней атома или молекулы. [c.257]

    Образовавшиеся ионы ускоряются при прохождении через отрицательно заряженные щелевые диафрагмы 6 по направлению к масс-анализатору. Неионизированные молекулы, как и незаряженные осколки, при помощи диффузионного насоса 8 выводятся из масс-спектрометра. Наряду с ионизацией электронным ударом иногда используют также другие методы получения ионов. При осуществлении фотоионизации необходимая энергия поставляется ультрафиолетовым излучением. Для этого требуется излучение с длиной волны 150—80 нм (вакуумная ультрафиолетовая область), соответствующее ионизационному потенциалу 8—15 эВ. При ионизации полем используют сильное электрическое поле, способное оторвать электроны от молекул вещества пробы. В обоих методах ионизации происходит мягкая ионизация, так как подводимая энергия лишь немного превышает потенциал ионизации и, таким образом, едва разрывает связи в молекулярном ионе . Поэтому спектры, получаемые при фотоионизации и ионизации по- [c.286]

    В этом уравнении опущена незначительная энергия отдачи и введена работа выхода ( 4 эВ) внутренних металлических поверхностей спектрометра РФС. Работа выхода материала спектрометра — это энергия, необходимая для удаления электрона с поверхности спектрометра. Работа выхода образца отличается от работы выхода материала спектрометра. Образец в спектрометре РФС находится в электрическом контакте со спектрометром, и, если имеется достаточное число носителей заряда (многие образцы представляют собой диэлектрики и носители заряда образуются в ходе облучения), уровни Ферми для образца и спектрометра будут одни и те же. Уравнение (16.25) можно понять, рассмотрев экспфимент РФС. При фотоионизации электрон образца получает некоторую кинетическую энергию ,. Для того чтобы попасть в спектрометр, электрон должен пройти через входную щель. Поскольку рабочие потенциалы спектрометра и образца различны, кинетическая энергия электрона изменяется до что обусловлено либо ускорением, либо замедлением фотоионизованного электрона входной щелью. В камере спектрометра электрон имеет кинетическую энергию и эта энергия измеряется прибором. Таким образом, для соотнесения энергии связывания с уровнем Ферми в выражение вводится К счастью, нет необходимости знать работу выхода каждого образца. [c.334]

    Однако в противоположность УФС естественная ширина линий обычных источников рентгеновских лучей РФС довольно значительна и играет большую роль в определении полуширины экспфиментально наблюдаемых спектральных линий [27]. В РФС обычно используют рентгеновский дублет 011 2, а это рентгеновское излучение образуется в том случае, когда электроны падают из оболочек Ьц и Ьщ (спин-орбитальное расщепление 2р-атомных уровней) в дырку оболочки К (1.5-атомный уровень). Естественная ширина линий, связанная либо с переходом Ь,1 -> К, либо с переходом Ьщ К, составляет 0,7 эВ для рентгеновского излучения А1 в этом случае дублеты перекрываются, приводя к эффективной ширине 1,0 эВ. Магниевое рентгеновское излучение Хо(1а2 состоит из дублета шириной 0,8 эВ. Источники рентгеновских лучей с большими энергиями (например, Сг, Си или Мо) характеризуются шириной дублетной компоненты, превьппающей 1,0 эВ. Таким образом, эффективный предел ширины линий РФС устанавливается естественной шириной источника рентгеновского излучения, несколько модифицированной естественной шириной, связанной с уровнем, с которого происходит фотоионизация. Некоторые вклады обусловлены также недостатками приборов. При изучении твердых веществ экспфиментально наблюдаемая полуширина спектральных линий РФС для пиков С15, N5 , Рзр, 82 и подобных им составляет 1,5 эВ. Эксперименты РФС с газообразными веществами дают значительно более узкие линии. Например, полуширина линии Ые для газообразного неона составляет 0,8 эВ [27]. Разница в полуширине линий для газообраз- [c.335]

    Пример такой структуры с пиками-сателлитами в спектре РФС изображен на рис. 16.12, где наблюдаются широкие пики, лежащие при более высоких энергиях связи, чем два пика для молекулы кислорода. Пики, помеченные буквами А, В и С, представляют собой полосы, характеризующие процесс встряхивания они возникают как сателлиты у пиков, обусловленных фотоионизацией валентных электронов. Аналогично рис. 16.17 демонстрирует структуру встряхивания для пика N5 молекулы азота. Пики, помеченные символами а, з, 4, 5 и а , обусловлены немонохроматичностью рентгеновского излучения Ка Мд. [c.353]

    Отметим, что наряду с фотодиссоциацией молекул на нейтральные части-/ цы наблюдаются также случаи фотоионизации, заключающиеся в распаде ) мо.пекулы на противоположно заряженные ионы или па положительный ион [c.160]

    Температуры, существенно превышающие уровень температур в печах и камерах сгорания, наблюдаются в дугах, в ударно нагретых газах перед движущимися с гиперзвуковон скоростью аппаратами, такими, как планетарные зонды, возвращающиеся космические корабли, и в ядерных взрывах. При столь высоких температурах в спектрах появляются линии одноатомного газа и электронные системы полос многоатомных газов, обязанные переходам между электронными уровнями энергии — связанно-связанным переходам. Фотоионизация, или свя-занно-свободные переходы, возникают в том случае, когда процессы с участием фотонов и термического возбуждения достаточны для ионизации газа. Эти переходы дают непрерывный спектр, являющийся противоположностью линиям или полосам поглощения, поскольку фотон, обладая энергией ниже требующегося для ионизации минимального значения, тем не менее может вэаи- [c.487]

    Такова в деталях программа вычислений энергии активации реакции рекомбинации радикалов и рэсстояний между ними на верщине активационного барьера. Для выполнения ее необходимо знание параметров Сь Сг. .. Ст, которые вычисляются на основе физикохимических характеристик молекул и радикалов. Потенциалы ионизации свободных радикалов мало отличаются от таковых для родственных молекул [338]. Для многих алкильных радикалов путем при-. менения методов электронного удара, фотоионизации и других способов были измерены согласующиеся значен ия потенциалов ионизации, которые приводятся в спрайечкой литературе 340].  [c.260]

    АВС Фотоизомеризация -Авен4-Р Отрыв атома водорода -(АВС)2 Фотодимеризация (фотоприсоединение) -АВС+-1-е Фотоионизация [c.136]

    Оценочные значения получены подобным (косвенным) путем, т. е. при получении данных ионизационных потенциалов использовались измерения эффективности электронного столкновения или фотоионизации. Видно, что для молекул, перечисленных в данной таблице, энергия диссоциации положительно заряженных молекулярных ионов значительно меньше, чем для неиони-зированной молекулы. (Следует заметить, что энергия диссоциации молекул, находящихся в возбужденных состояниях, не обязательно всегда меньше соответствующей энергии диссоциации молекул в основных состояниях. Но для рассматриваемых здесь органических соединений представляют интерес случаи с пониженной энергией диссоциации вследствие удаления электрона.) [c.111]

    Дополнительную информацию о химическом строении комплексов дает тонкая структура РЭС. Тонкая структура возникает в ре- )ультате того, что одновременно с фотононнзацией происходят (с меньнк й вероятностью) другие электронные переходы, наличие которых может быть обусловлено проходящим параллельно с фотоионизацией возбуждением электронов до первой свободной орбитали ( встряхивание ). Они проявляются как пики-сателлиты с низкой интенсивностью ири энергиях, которые превосходят (ДЕ до 50 эВ) энергию связей, характеризующих основные пики. [c.262]


Смотреть страницы где упоминается термин Фотоионизация: [c.332]    [c.333]    [c.335]    [c.335]    [c.350]    [c.36]    [c.257]    [c.345]    [c.28]    [c.160]    [c.329]    [c.78]    [c.145]    [c.146]    [c.69]   
Смотреть главы в:

Основы масс-спектрометрии органических соединений -> Фотоионизация

Современная квантовая химия Том 1 -> Фотоионизация

Современная квантовая химия Том1 -> Фотоионизация

Фотохимия -> Фотоионизация


Основы и применения фотохимии (1991) -- [ c.49 , c.198 ]

Электрические промышленные печи. Ч.2 (1970) -- [ c.22 ]

Химия Краткий словарь (2002) -- [ c.332 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.631 ]

Кинетика и катализ (1963) -- [ c.0 ]

Кинетика и механизм газофазных реакций (1975) -- [ c.310 ]

Физика и химия твердого состояния органических соединений (1967) -- [ c.296 ]

Успехи спектроскопии (1963) -- [ c.91 ]

Физические методы в неорганической химии (1967) -- [ c.202 ]

Фото-люминесценция растворов (1972) -- [ c.54 ]

Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.12 , c.14 ]

Электроника (1954) -- [ c.119 , c.121 , c.123 ]

Индуцированные шумом переходы Теория и применение в физике,химии и биологии (1987) -- [ c.249 ]

Ароматическое замещение по механизму Srn1 (1986) -- [ c.255 ]

Секторы ЭПР и строение неорганических радикалов (1970) -- [ c.51 ]

Карбониевые ионы (1970) -- [ c.78 ]

Ионы и ионные пары в органических реакциях (1975) -- [ c.0 ]

Фотохимия (1968) -- [ c.393 ]

Руководство по аналитической химии (1975) -- [ c.286 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.298 , c.316 ]

Анионная полимеризация (1971) -- [ c.297 , c.341 , c.350 , c.351 ]

Кинетика и механизм газофазных реакций (1974) -- [ c.310 ]

Биофизика Т.2 (1998) -- [ c.433 ]

Методы практической биохимии (1978) -- [ c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Анодная фотоионизация

Вероятность фотоионизации

Возбужденные состояния молекул при фотоионизации

Двухатомные молекулы. Б. Многоатомные молекулы. В. Коэффициенты поглощения. Г. Измерение фотоионизации j Общие вопросы

Ионизационные потенциалы из фотоионизации

Ионизация фотоионизация

Катион-радикал при фотоионизации

Кривая эффективности ионизации при фотоионизации

Лазерная фотоионизация в неионных мицеллах

Поперечное сечение фотоионизации

Процессы, протекающие при фотоионизации молекулы

Результаты, полученные по методу фотоионизации

Сечение фотоионизации

Ступенчатая фотоионизация

Схема прибора Таунсенда Юза для исследования объёмной фотоионизации в воздух

Трифенилен при фотоионизации

Фотоионизации порог

Фотоионизация аминокислот

Фотоионизация ароматических аминов

Фотоионизация газа объёмная

Фотоионизация газа ступенчатая

Фотоионизация и фотодиссоциация ароматических углеводородов

Фотоионизация излучением абсолютно черного тела

Фотоионизация кривая эффективности

Фотоионизация молекул

Фотоионизация потенциалы ионизации

Фотоионизация радикалов

Электронная спектроскопия для химического анализа ЭСХА фотоионизация

Энергетика фотоионизации в конденсированной фазе



© 2025 chem21.info Реклама на сайте