Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловые эффекты процессов

    Кроме фазовых переходов первого рода, существуют также фазовые переходы второго рода. Для них характерно не только равенство изобарных потенциалов, но и равенство энтропий и объемов сосуществующих в равновесии фаз, т. е. отсутствие теплового эффекта процесса и изменения объема при температуре превращения  [c.143]

    При контроле расчетов теплового эффекта процесса окисле- ния нефтяных остатков воздухом нужно учитывать, что величина этого эффекта меньше, чем теплота полного сгорания остатка с образованием воды и диоксида углерода. Теплота сгорания может быть определена из теплотворной способности нефтепродукта и количества воздуха, необходимого для сжигания. Так, теплотворная способность мазутов составляет в среднем 42 000 кДж/кг, объем воздуха для их сжигания в стехио-метрических условиях—10,1—10,3 м /кг [52] следовательно,, тепловыделение при сжигании мазутов и близких к ним по элементному составу гудронов составляет 14 ООО кДж на 1 кг Ог. [c.47]


Таблица 2. Значения теплового эффекта процесса каталитического риформинга для различных видов сырья [3] Таблица 2. Значения <a href="/info/939643">теплового эффекта процесса</a> <a href="/info/20515">каталитического риформинга</a> для <a href="/info/100786">различных видов</a> сырья [3]
    Стремление системы к понижению потенциальной энергии назо-зем энергетическим или энтальпийным фактором. Количественно )та тенденция системы выражается через тепловой эффект процесса, г. е. значением АЯ. [c.172]

    Реакции конденсации и поликонденсации многих химических вешеств сопровождаются значительным тепловым эффектом. Процессы поликонденсации по термодинамическим характеристикам к свойствам получающихся высокомолекулярных продуктов сходны с процессами полимеризации. Поэтому аварии, возникающие пра проведении процессов конденсации и поликонденсации, имеют аналогичный характер. [c.345]

    Все основные реакции протекают с отрицательным тепловым эффектом (с поглощением тепла), причем суммарный тепловой эффект процесса определяется глубиной превращения углеводородов. В ходе процесса температура (480—520 °С) снижается, и дальнейшего превращения сырья не происходит. Поэтому для полного превращения сырья необходим промежуточный подогрев смеси непревращенного сырья и продуктов реакции и использование нескольких последовательных реакторов (обычно трех). [c.41]

    Небольшой тепловой эффект процесса. [c.89]

    Образцы нагревали со скоростью 10°С/мин в интервале температур 20—1000°С. В первой серии навески образцов составляли 1000, 1330 и 1400 мг, во второй — 100 мг. В каждом эксперимепте одновременно записывали следующие параметры изменение температуры образца — кривая Г изменение массы навески — кривая ТГ] изменение скорости изменения массы — дифференциальная кривая ДТГ и характеристика тепловых эффектов процессов физико-химических превращений, происходящих в образцах — дифференциальная кривая ДТА. Результаты первой серии представлены на рис. 13. [c.24]

    Для большинства физико-химических расчетов необходимо знать теплоемкости веш,еств, участвуюш,их в процессе, тепловые эффекты процессов растворения, фазовых превращений и химических реакций. Измерение этих величин может быть произведено при помощи различных экспериментальных методов. При температурах, близких к комнатной (20—50 ), широко применяется калориметрический метод. [c.129]


    Если извес ша константа диссоциации при нескольких температурах, то по уравнению изобары Вант-Гоффа можно рассчитать тепловой эффект процесса диссоциации  [c.272]

    В нефтепереработке основная масса процессов сопровождается многочисленными химическими реакциями, протекающими с выделением или поглощением тепла. Тепловой эффект процесса слагается из теплот этих реакций. Для технологических расчетов реакционных устройств тепловые, эффекты процессов переработки нефти и газа либо рассчитывают по закону Гесса либо определяют путем обследования реакционных устройств промышленных установок. Последний метод более точен. [c.78]

    По закону Гесса тепловой эффект процесса равен сумме теплот образования полученных продуктов за вычетом суммы теплот образования исходных веществ  [c.78]

    Поэтому общий тепловой эффект процесса равен  [c.367]

    Известно, что согласно принципу Ле Шателье влияние изменения температуры на равновесие определяется знаком и величиной теплового эффекта процесса. Почему влияние температуры обусловлено энтальпией процесса, а не энтропийным чле-но-м TAS, ведь повышение температуры соответствует как росту самого члена TAS, так и в большинстве случаев росту энтропии рассматриваемой системы. [c.46]

    Qnp — тепловой эффект процесса  [c.182]

    Закон Гесса и его следствия не могут быть использованы для расчета тепловых эффектов процессов, если мы не условимся, какой смысл вкладывать в понятия теплота образования и теплота сгорания вещества. [c.165]

    По данным [54], тепловой эффект процесса коксования зависит от характеризующего фактора К и равен  [c.182]

    Тепловой эффект процесса ранен [c.187]

    По тепловому эффекту процесса, осуществляемого в печи  [c.33]

    В дальнейшем ради краткости наряду с термином тепловой эффект (процесса) будет употребляться и термин теплота (процесса), [c.162]

    Вопросы строения вещества нашли отражение не только при описании энергетики процессов, т. е. в первой части пособия, но и в других его частях. Уделено большое внимание и периодической системе элементов Д. И. Менделеева. К ней мы обращаемся и при рассмотрении тепловых эффектов процессов, и при исследовании реакционной способности веществ, и при анализе свойств растворов, а также при изложении некоторых вопросов, связанных с химией элементов (часть V). [c.5]

    Количество выделенного (или поглощенного) тепла называют тепловым эффектом процесса. Чтобы этой величине придать полную определенность, надо условиться об ее знаке, выбрать единицы измерения, установить, к какому количеству вещества ее следует относить, и договориться о режиме протекания процесса. Решение вопроса о знаке и единицах измерения не вызывает затруднений, хотя в отношении первого могут быть два, а в отношении второго — очень много вариантов. Примем положитель-нь1 тепловой эффект эндотермических процессов условимся относить тепловой эффект к 1 моль вещества (обычно продукта реакции) и выражать его в килокалориях. [c.9]

    Как быть в тех случаях, когда надо знать тепловой эффект процесса при иных температурах и давлениях В первом приближении можно принять, что изменения [c.13]

    Тепловой эффект процесса рассчитывают обычно, исходя из закона Гесса. [c.90]

    Прп выводе уравнений материального баланса для динамических режимов функционирования абсорбционной колонны используем следующие допущения 1) количество газа над тарелкой мало по сравнению с количеством находящейся на ней жидкости 2) эффективность тарелки 100% 3) соотношение между равновесными составами газа и жидкости выражается уравнением У = тХп + + 6 4) количества жидкости на всех тарелках одинаковы 5) тепловым эффектом процесса абсорбции пренебрегаем. [c.189]

    Закон Гесса широко применяется при различных термохимических расчетах он дает возможность вычислить тепловые эффекты процессов, для которых экспериментальные данные отсутствуют, а во многих случаях — и для таких, для которых они не могут быть измерены в нужных условиях, или когда процессы еще не осуществлялись. Это относится как к химическим реакциям, так и к процессам растворения, испарения, кристаллизации, адсорбции и др. Однако, применяя данный закон, следует строго соблюдать условия, лежащие в его основе. [c.192]

    Тепловой эффект процесса кристаллизации пропорционален изменению концентрации раствора, что выражается уравнением [c.231]

    ТЕПЛОСОДЕРЖАНИЕ. УДЕЛЬНЫЙ ТЕПЛОВОЙ ЭФФЕКТ ПРОЦЕССА. ТЕПЛОТВОРНОСТЬ ТВЕРДЫХ И ЖИДКИХ ТЕЛ [c.733]

    Радиоактивностью называется снособность атомов неустойчивых и,зотопов некоторых элементов к самопроизвольному лучеиспусканию. Последнее обладает рядом общих свойств, которые служат для его качественного и количественного определения. Важн( й иими свойствами радиоактивного излучения являются а) действие его на фотографическую эмульсию, вызывающее ее почернение б) ионизация газов, т. е. возбуждение в них электро-нрово.цности в) высокий тепловой эффект процесса, отличающий его от обычных химических превращений г) возбуждение свечения некоторых веществ, напрнмер 2п.Я д) значительная проникающая способность и др. [c.61]


    ДО 24 000° К и захватывает область первой и второй ступеней ионизации атомов углерода и кислорода. Рис. 33, б показывает, что при повышении температуры сначала молекулы СОг диссоциируют на СО и О2, далее молекулы О2 разлагаются на свободные атомы. При данном давлении уже к 3 000° К в равновесной системе почти не остается молекул СО2 и О2 и она состоит практически, полностью из молекул СО и атомов кислорода. Примерно с 4 000° К начинается разложение молекул СО. Дальнейшее повышение температуры приводит к отделению от атомов углерода, а затем и от атомов кислорода сначала одного электрона, а при более высоких температурах и другого электрона. Образование плазмы в этой системе при указанном давлении начинается примерно с 5000° К. Процессы термической ионизации атомов, как и процессы термической диссоциации молекул, являются обратимыми термодинамическими процессами. Для них могут быть определены соответст-вуюш,ие тепловой эффект процесса и константа равновесия, а также зависимость их от температуры и пр. [c.120]

    При такой системе знаков тепловым эффектом процесса называют сумму поглощаемой теплоты и всей работы, выполненной окружающей средой над данной системой, за вычетом работ-ы внешнего давления. Очевидно, что все величины должны быть выражены в одинаковых единицах. [c.182]

    Гидролиз диорганодихлорсиланов — очень быстрая реакция. Даже при —45 "С в водном ацетоне константы скорости гидролиза диметилдихлорсилана (ДДС) равны 95 мин" для первого и 25 МИН" для второго атома хлора [26]. При массовом отношении ДДС вода = 1 0,14 (эквимольном) реакция идет с полным выделением газообразного НС1 и поглощением 30,9 кДж теплоты на 1 моль ДДС (240 кДж на 1 кг ДДС). При массовом отношении 1 1 (мольном 1 7), благодаря полному растворению НС1 с образованием 40%-ной соляной кислоты, суммарный тепловой эффект положителен (116 кДж/моль или 896 кДж/кг). Гидролиз с частичным выделением газообразного НС1 при массовом отношении 1 0,32 (мольном 1 2,3) идет без тепловых эффектов. Процессы с выделением газообразного НС1 сложнее в аппаратураом оформлении, чем процессы с его полным поглощением, и приводят к образованию более вязких к более кислых гидролизатов. ---- [c.469]

    И, иакоиеЦ ио уравнению AG = AH — TAS можно рассчитать изменение энтроиии, если известны значения изобарно-изотерми-ческого потеицнала AG° и тепловой эффект процесса диссоциации АИ°  [c.272]

    Фазовые переходы. Тепловые эффекты процессов перехода из олмаю агрегатного состояния в другое обычно значительно меньше таковых для химических реакции. В частности, теплоты парообразования (при 1.01 кПа) имеют значения порядкд 40 кДж/моль (реже 100 и более кДж/моль), теплоты плавления, перехода из аморфного состояния в кристаллическое и превраше-ння одной модификации в другую — порядка 4—20 кДж/моль. Значения теплот фазовых переходов для ряда веществ приведены в табл. 2.2. Теплоты парообразования велики для тугоплавких (высококипящих) веществ. Так, для У(р=101 кПа) [c.169]

    С целью осуществления процесса была предложена и рекон струкция типовой установки Л-35/11-300 каталитического рифор минга, заключающаяся в дополнении блока гидроочистки еще од ним реактором и переводе этого блока на режим гидрокрекинга а также в установке дополнительной печи и частичной модерниза ции оборудования. Проектная производительность установки по сырью — 370 тыс. т в год [17]. Особенностью реконструкции явля ется относительно невысокое давление гидрокрекинга (4,5 МПа) позволяющее использовать реакторы гидроочистки. Прочие пара метры прюцесса температура 340—380 °С, кратность циркуляции водородсодержащего газа 1000 м /м , объемная скорость подачи сырья 2,2 ч рассчитанный тепловой эффект процесса — около 250 кДж/кг. Итоговый материальный баланс близок к приведенному ранее — выход товарного бензина АИ-93 (без добавки ТЭС) составляет около 70% на исходное сырье. Гидрокрекингу подвергают фракцию 130—180 °С прямогонного бензина, риформингу — фракцию 85—180 °С после гидрокрекинга. [c.70]

    Влияние температуры окисления гудрона на тепловой эффект процесса показано на рис. 3.12. Снижение теплового эффекта в интервале температур 200—300 °С соировож-содержания масел и понижением содержа- [c.210]

    Количество выделеннЪ.й (или поглощенной) теплоты называют тепловым эффектом процесса .  [c.162]

    Если надо определить тепловой эффект процесса при нестан- дартных температурах и давлениях, то в первом приближении можно принять, что изменения температуры и давления мало отражаются на величине АЯ. Малую чувствительность АЯ к изменению температуры можно показать иа примере реакции [c.167]

    Выясним теперь, как влияет температура на направление смещения равновесия в реакциях (I) и (IV). Определим вначале, [юльзуясь законом Гесса, тепловой эффект процесса (I). Для этого можно поступить двояко или от суммы теплот образования СО и Н О отнять теплоту образования СО2, или из теплоты сгорания Из вычесть теплоту сгорания СО. В результате получим величину ДЯ=—9,77 ккал/моль. Следовательно, нагревание будет сменить равновесие (1) влево, охлаждение — вправо (см. стр. 32) иными словами, с повышением температуры в смеси будет расти содержание окиси углерода и водяного пара, причем, так как ДЯ не очень велико, этот рост не будет значительным. [c.74]

    Обозначим Ql—тепло, отдаваемое теплоносителем илн отбираемое хладагентом Q2 — тепло, вносимое с реакционной массой Рз — тепловой эффект процесса — тепло, отводимое из аппарата с реакционной массой Ql, — тепло, расходуемое на нагревание материала аппарата (учитывается только для аппаратов периодического де11ствия) — потери. [c.90]

    Особенность совмещенных процессов состоит в том, что, помимо фазового равновесия, необходимо рассматривать и химическое равновесие. А это значит, что необходимо исследовать кинетику возможных химических реакций в условиях, создаваемых при ректификации. Следует заметить, что при медленных химических реакциях и при низких тепловых эффектах процесс практически не отличается от обычной ректификации. Имеющееся отличие будет сказываться лишь при большом времени пребывания реагентов и проявляться в накоплении продуктов побочных реакций в продуктах разделения. При наличии же больших тепловых эффектов и скоростей реакций могут быть совершенно неожиданные результаты. Так, при экзотермической реакции с большим тепловым эффектом возможно полное испарение потока жидкости в зоне реакции и, наоборот, при эндотермической — захолаживание жидкости и конденсация парового потока. Поэтому при попытке совмещения ректификации и реакции важнейшей задачей является обеспечение условий нормального функционирования процесса, т. е. его устойчивости и управляемости. Отсюда следует, что хеморектификация протекает в более жестких границах изменения основных технологических параметров. Выход за допустимые границы (например, по теплоотводу) может привести к взрыву в случае сильно экзотермической реакции и останову процесса массообмена между потоками пара и жидкости в случае эндотермической реакции. Интересным моментом является то, что возникает проблема рационального использования выделяемого тепла внутри схемы, например, на образование парового потока с целью снижения энергетических затрат на ведение процесса. [c.365]

    Перечисленные условия проведения процесса отмывки реализуются в аппарате непрерывного действия, состоящем из двух последовательно соединенных колен (вертикального и наклонного) трубчатого типа [7]. Принцип работы аппарата непрерывного действия для осуществления процесса отмывки гранул сульфокатионита состоит в следующем. Ионит с вибролотка направляется в загрузочное устройство вертикального колена аппарата отмывки. В верхнюю часть вертикального колена аппарата подается карбонат аммония в весовом соотношении к иониту 1 1. Смешиваясь с карбонатом аммония, ионит из вертикального колена попадает в наклонное колено аппарата, откуда после контакта с раствором карбоната аммония при помощи шнека выводится из аппарата в ванну с циркулирующей деминерализованной водой, где окончательно отмывается от сульфата и карбоната аммония. По мере насыщения солями аммония вода выводится из ванны и1 используется для приготовления насыщенного раствора карбоната аммония. В конце наклонного колена в аппарат дозируется насыщенный раствор карбоната аммония, который, контактируя в наклонном колене и нижней части вертикального колена с ионитом, нейтрализует и замещает серную кислоту, превращаясь в сульфат аммония, после чего выводится в вертикальном колене в нейтрализатор. Все детали аппарата, контактирующие с реакционной массой, изготавливаются из кислотостойкой стали. Для поддержания температурного режима оба колена аппарата снабжены рубашками. Использование в качестве отмывающего агента раствора карбоната аммония и добавление соли карбоната аммония позволяет нейтрализовать серную кислоту и уменьшить тепловой эффект процесса отмывки, так как растворение и разбавление карбоната и сульфата аммония сопровождается поглощением тепла. [c.392]

    Нередко тепловые эффекты процессов называются и просто теплотой процесса (теплота абразования, теплота сгорания, теплота испарения и т. п.). [c.183]


Смотреть страницы где упоминается термин Тепловые эффекты процессов: [c.130]    [c.272]    [c.78]    [c.229]    [c.164]    [c.232]   
Смотреть главы в:

Практикум по общей химии -> Тепловые эффекты процессов

Курс химии -> Тепловые эффекты процессов

Курс химии -> Тепловые эффекты процессов

Химическая термодинамика к курсу общей химии -> Тепловые эффекты процессов

Практикум по общей химии Издание 2 1954 -> Тепловые эффекты процессов

Практикум по общей химии Издание 3 -> Тепловые эффекты процессов

Практикум по общей химии Издание 4 -> Тепловые эффекты процессов

Практикум по общей химии Издание 5 -> Тепловые эффекты процессов




ПОИСК





Смотрите так же термины и статьи:

Теплово эффект



© 2025 chem21.info Реклама на сайте