Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппараты поверхностью контакта, образуемой в процессе движения

    АППАРАТЫ С ПОВЕРХНОСТЬЮ КОНТАКТА, ОБРАЗУЮЩЕЙСЯ В ПРОЦЕССЕ ДВИЖЕНИЯ ПОТОКОВ [c.267]

    В аппаратах с поверхностью контакта, образующейся в процессе движения потоков, обычно возникает так называемый барботажный слой, когда газ (пар), проходящий через слой жидкости, создает неоднородную газо-жидкостную систему. [c.267]


    При наличии двухфазного потока поверхность контакта, образующаяся в процессе движения потоков в аппарате, не может быть определена непосредственно. В таких случаях кинетику процесса выражают через объемный коэффициент массопередачи. [c.673]

    В пленочных колоннах контакт фаз осуществляется между движущимся паровым потоком и стекающей навстречу ему пленкой жидкости. Эти колонны относятся к аппаратам с фиксированной поверхностью фазового контакта, В процессе движения пленки на поверхности жидкости образуются волны и по мере увеличения скорости пара над поверхностью состояние ее не постоянное. При достижении скорости пара 7-12 м/сек (в зависимости от диаметра трубы и плотности пара) наступает режим "подвисания , т,е, пленка перестает двигаться вниз. Дальнейшее увеличение скорости пара приводит к обращенному течению пленки, т е. пленка вместе с газом начинает двигаться вверх. [c.67]

    Схемы основных видов тарелок и насадочных аппаратов, в которых поверхность контакта образуется в процессе движения потоков [c.138]

    Аппараты с поверхностью контакта, образующейся в процессе движения потоков [c.228]

    Агрегатное состояние реагирующих и образующихся при реакции веществ является основным фактором, определяющим тип аппарата в целом. При синтезе присадок практически возможны следующие системы взаимодействия реагентов газ — жидкость, жидкость — жидкость и жидкость — твердое вещество. Взаимодействие газа и жидкости протекает тем активнее, чем больше поверхность их соприкосновения и чем эффективнее газ распределяется в жидкости. Скорость поглощения газа жидкостью увеличивается также при повышении давления системы. Одним из методов создания максимальной поверхности контакта в периодических аппаратах является перемешивание, которое получило наиболее широкое распространение в процессах производства присадок. В системах жидкость — жидкость взаимодействие компонентов ускоряется в результате развития поверхности массообмена реагирующих жидкостей и увеличения скорости перемещения одной жидкости относительно другой. Наиболее развитая поверхность массообмена и теплообмена образуется при пленочном движении жидкости, поэтому создание пленочного движения жидкости следует рассматривать как важнейший путь интенсификации процесса. При взаимодействии несмешивающихся жидкостей или жидкостей и твердых веществ хорошее контактирование является также одним из важнейших факторов. Интенсивность контакта зависит от консистенции реагирующих веществ. [c.221]


    В адсорбционных аппаратах с пневматическим перемешиванием вынужденное движение жидкости и поршкообразного активного угля вызывается подводом энергии с потоком воздуха, вводимым в аппарат через распределительное устройство. Физической причиной обмена энергией между пузырьками воздуха и жидкостью является вязкое трение поверхности контакта газовой и жидкой фаз. Пузырьки воздуха, подаваемого через распределительное устройство, всплывают вместе с увлекаемой ими жидкостью, образуя восходящий газо-жидкостный факел, называемый ядром струи. По мере подъема эта струя расширяется вследствие инжектирования жидкости, а также в результате увеличения объема пузырей при их всплывании [50], однако угол расширения струи невелик и составляет около 10—12° [51]. Поэтому непосредственное контактирование воздуха и жидкости происходит в относительно малых областях объема аппарата [51]. По-видимому, это является основной причиной того, что перемешивание газом считается малоинтенсивным процессом, требующим большего расхода энергии, чем при механическом перемешивании [43]. [c.181]

    Для проведения процессов растворения газов широко используются аппараты с высоким барботажным слоем (см. 1.4.1 и 6.7.1). Их основными преимуществами являются достаточно развитая поверхность контакта фаз, простота конструкции, которая позволяет проводить процессы под высоким давлением, большое время пребывания жидкости в аппарате. В барботажных аппаратах формируется неустойчивое циркуляционное движение жидкости по высоте аппарата, которое обеспечивает не только интенсивное перемешивание жидкости, но и вовлекает в циркуляционное движение более мелкие пузыри. В ряде случаев (например, при проведении окислительных процессов с участием кислорода воздуха) такое перемешивание газовой фазы по высоте аппарата снижает движущую силу процесса растворения. Простые барботажные устройства трубы с отверстиями, дырчатые тарелки, колпачки с прорезями — не позволяют получить пузыри небольших размеров и тем самым обеспечить высокоразвитую поверхность контакта. Кроме того, вихревое движение жидкости приводит к тому, что при высоте барботажного слоя более 0,8-1,0 м пузыри начинают коалесцировать. Поэтому размер пузырей в барботажных аппаратах обычно колеблется от 4 до 10-12 мм. Более мелкие пузыри образуются при барботировании (продавливании) газа через специальные распределительные устройства из пористых материалов (керамики, металла, химически стойких полимеров). Однако такие устройства не могут использоваться в жидкостях с высоким содержанием взвешенных или смолистых веществ. Пузыри размером до 4 мм удается получить в аппаратах с мешалками (см. 6.1.4 и 6.7.3). Однако в таких аппаратах возрастает интенсивность циркуляции жидкости, что приводит к увеличению дисперсии времени пребывания пузырей по сравнению с обычными барботажными аппаратами. Наличие вращающихся деталей не позволяет использовать аппараты с мешалками при высоких давлениях. Высоки также и энергозатраты на перемешивание жидкости. [c.48]

    Аппарат работает следующим образом. При подаче на обмотки генератора переменного трехфазного тока создается вращающееся магнитное поле, приводящее в движение ротор и ферромагнитные частицы. В зависимости от необходимых условий проведения процесса в аппарате осуществляется прямоток или противоток фаз. Жидкость поступает на ротор и при его вращении отбрасывается к стенкам корпуса. Соударяясь с ферромагнитными частицами и стенками аппарата, жидкость диспергируется, образуя большую поверхность контакта, что способствует интенсивному взаимодействию между фазами. Ротор с винтовыми каналами выполняет одновременно функцию побудителя продольного перемещения газа (пара) и жидкости, уменьшая перепад давления по высоте аппарата. Это позволяет проводить процессы под глубоким вакуумом. В результате изменения скорости и направления вращения ротора можно обеспечить нужное для конкретного процесса время контактирования. [c.92]

    Моделирование и расчет аппаратов с поверхностью контакта фаз, образующейся в процессе движения потоков [c.313]

    Как правило, эти аппараты работают при прямоточном движении раствора и образующегося вторичного пара, который занимает центральную часть труб. В связи с этим здесь отсутствует гидростатический столб парожидкостной смеси. Эти аппараты применяют для упаривания растворов, чувствительных к высоким температурам, а также склонных к интенсивному пено-образованию, так как процесс, как правило, проводят под вакуумом и при малом времени контакта с поверхностью теплообмена. [c.44]


    С целью интенсификации процесса абсорбции и улучшения сепарации фаз в каналах круглого сечения устанавливают завихрители (закручиватели). Дополнительное вращательное движение, сообщаемое двухфазному потоку, увеличивает эффективность массопереноса еще в 1,5-2 раза [188] и позволяет использовать возникающую центробежную силу для разделения фаз после выхода из контактной зоны. В контактной зоне жидкость под действием этой силы образует на внутренней поверхности канала винтообразную движущуюся вверх пленку. Это явилось стимулом для использования закрученного движения в зоне контакта при разработке высокоскоростных абсорбционных аппаратов. Расчеты показывают [189], что аппарат диаметром 2,4 м с прямоточными тарелками с завихрителями может заменить аппарат с колпачковыми тарелками диаметром 5,0 м при равной производительности. [c.546]

    В контактном теплообменном аппарате диспергирование одной из фаз производится при помощи распылителя той или иной конструкции (сопла, перфорированные тарелки и т.п.). На выходе из распылительного устройства происходит дробление струи на множество капель. При этом в барботажном слое создается развитая поверхность контакта фаз. На струю жидкости, вытекающую из отверстия или насадки, действуют силы инерции и гравитации, силы вязкости, поверхностного натяжения, а также турбулентные пульсации в струе и в самой среде. Капли, образующиеся при распаде струи, в процессе движения соударяются между собой п со стенками аппарата. Таким образом, конечная величина частиц диспергируемой фазы определяется суммарным эффектом трех процессов диспергирования, дробления и коалесценции. Определение этой величины расчетным путем пока еще невозможно из-за недостаточной изученности вопроса. Однако для ряда частных случаев решения уже получены и содержатся в работах Колдер-бенка, Фудзияма, Хейфорта и Тройбэла, Сиемса и др. [3]. [c.66]

    Скорость массопереноса в процессах жидкостной экстракции сильно зависит от примесей поверхностно-активных веществ, изменяющих величину поверхностного натяжения на границе раздела жидких фаз и таким образом влияющих на размер образующихся капель и на скорость циркуляционного движения дисперсной жидкости внутри капель. Кроме того, абсорбция молекул поверхностно-активных веществ поверхностью контакта фаз может приводить к образованию дополнительного сопротивления процессу переноса массы целевого компонента. Присутствие даже малых количеств поверхностно-активных веществ значительно усложняет кинетику массопереноса, и в таких сл5гчаях расчет необходимых размеров экстракционного аппарата производится, как правило, по непосредственным экспериментальным данным. [c.462]

    Для САИ, работающего в режиме газлифтного аппарата, интенсивность массообмена определяется скоростью движения паровой фазы, образующейся при кипении жидкости. Экспериментально показано [77], что максимальный коэффициент мас-соотдачи, например, в процессе аммонизации фосфорной кислоты наблюдается при удельном расходе пара д =7,2—7,8 кг/(м2-с). При изменении этой величины уменьшается поверхность межфазового контакта в результате снижения скорости турбулентной диффузии или доли жидкой фазы в реакционном объеме за счет перехода от снарядного к стержневому режиму движения. [c.82]

    Кинетика гетерогенных процессов обмена в общем случае определяется скоростяхми протекания целого комплекса микро-и макроскопических процессов скоростями химических реакций, интенсивностью адсорбционно-десорбционных процессов, скоростью диффузии реагентов в гидродинамическом пограничном слое и т.д. Полное и точное математическое описание всех этих процессов приводит к громоздким системам дифференциальных и интегро-дифференциальных уравнений, решение которых с необходимой точностью не всегда удается получить не только аналитически, но даже численными методами. Трудности полного математического описания кинетики гетерогенных процессов являются причиной широкого распространения методов формальной кинетики, в которой используются линейные или нелинейные кинетические дифференциальные уравнения, в состав которых входят константы, определяемые в результате обработки экспериментальных данных. Такие кинетические уравнения удовлетворительно описывают кинетику процессов обычно только для отдельных элементов общей поверхности межфазного контакта для отдельного зерна катализатора, для единичного элемента диспергированного адсорбента и т. д. С другой стороны, расчет технологических процессов требует анализа кинетики гетерогенного обмена для всей поверхности межфазного контакта, с учетом реальных условий протекания процесса в конкретном аппарате или реакторе. На практике в большинстве случаев условия протекания гетерогенного обмена неодинаковы в различных частях общей поверхности межфазного контакта и могут различным образом изменяться во времени. Причинами этого являются застойные зоны, флуктуации скоростей относительного движения фаз, пузыри и каналообразованне в реакторах с кипящим слоем и т. д. Таким образом, даже если в распоряжении исследователя имеется адекватное математическое описание кинетики процесса для отдельного элемента поверхности межфазного контакта, переход к описанию кинетики исследуемого процесса на всей поверхности межфазного контакта в условиях реального промышленного аппарата может оказаться достаточно сложным вследствие того, что многие физические процессы, влияющие на функционирование реальных аппаратов, имеют стохастическую природу. [c.197]


Основы массопередачи (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аппараты с поверхностью контакта, образуемой в процессе движения потоков

Аппараты с поверхностью контакта, образующейся в процессе движения потоков

Моделирование и расчет аппаратов с поверхностью контакта фаз, образующейся в процессе движения потоков

Поверхность контакта фаз



© 2024 chem21.info Реклама на сайте