Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппарат газлифтный

    Для математического описания теплопереноса от циркулирующей газо-жидкостной смеси к стенкам теплообменных элементов можно воспользоваться [2] общими закономерностями полуэмпирической теории турбулентного переноса с привлечением зависимостей, характеризующих теплообмен в аппаратах газлифтного типа. [c.528]

    Наиболее простыми по устройству являются односекционные барботажные аппараты для взаимодействия газа (пара) с жидкостью, либо двух жидкостей, либо газа (жидкости) с зернистыми твердыми веществами. Эти аппараты применимы в случаях, когда для протекания процессов тепло- и массообмена и химических реакций достаточно одного контакта восходящего потока с одним слоем жидкости или твердого вещества. Для ускорения протекающих процессов эти аппараты часто снабжаются механическими, инжекционными, газлифтными, пульсационными и вибрационными перемешивающими устройствами. Они способствуют гомогенизации жидкой среды или зернистого материала, росту межфазной поверхности, а также интенсивности межфазного н внешнего массо- или теплообмена. В рассматриваемых аппаратах, работающих обычно в периодическом режиме, достигаются практически полное перемешивание барботируемой среды (жидкости) и определенная степень перемешивания газового потока. [c.15]


    Удельная площадь теплопередающей поверхности аппарата /="уд = / /исм = 377/4,5 = 83,8 м , т. е, более 10 м , следовательно, для проведения заданной реакции надо принять кожухотрубчатый газлифтный реактор. [c.286]

    Из сопоставления значений полученных здесь и в примерах 9.4 и 9.5, видно, что в газлифтном реакторе объемный коэффициент массопереноса, а следовательно, и межфазная поверхность меньше, чем в аппарате с механическим диспергированием газа, но больше, чем в барботажной колонне. [c.289]

    Отложения неорганических солей в призабойной зоне пласта, оборудовании скважины, промысловых коммуникациях и аппаратах существенно осложняют процесс добычи, подготовки и транспортирования нефти. Основные осложнения преждевременный выход из строя погружных электроцентробежных насосов, газлифтных клапанов, теплообменного оборудования, насосов откачки закупорка и порыв промысловых коммуникаций резкое снижение продуктивности добывающих и приемистости нагнетательных скважин и т. д. [c.229]

    Испарение воды — восьмой фактор — приводит к прямому повышению концентрации солей и, следовательно, к увеличению степени пересыщения раствора. Этот фактор наиболее сильно сказывается на высокотемпературных промысловых объектах, таких, как погружной электродвигатель, теплообменные аппараты на установках подготовки промысловой продукции и т. д. Интенсивное выпаривание пластовой продукции может происходить и при низких температурах при газлифтном способе добычи нефти, так как [c.234]

    Скорость циркулирующей жидкости может достигать 1—2 м/с. Это позволяет обрабатывать в газлифтном реакторе неоднородные жидкие системы с большим различием плотностей сплошной и дисперсной фаз. Интенсивная циркуляция способствует лучшему теплообмену между жидкостью и теплообменными поверхностями, образованными стенками барботажных труб. Возможность размещения в газлифтных аппаратах больших поверхностей теплообмена без нарушения принципа циркуляции делает их наиболее эффективными устройствами для проведения реакций с большим тепловым эффектом. [c.9]

    В отличие от газлифтного трубчатого реактора в этом аппарате существует как восходящее движение газожидкостной смеси (в нечетных трубах) так и нисходящее (в четных трубах). Устойчивые гидродинамические режимы наблюдаются при приведенных скоростях газа от 0,3 до 10 м/с и жидкости от 0,4 до 2 м/с. Достаточно высокие скорости потоков позволяют обрабатывать в змеевиковом реакторе неоднородные жидкие системы с большой разницей плотностей фаз. [c.10]


    В случае направленного движения потока газожидкостной смеси (в газлифтных или змеевиковых барботажных аппаратах) появляются дополнительные характеристики приведенная [c.17]

    Для второго случая характерно восходящее или нисходящее движение двухфазного потока в трубах — внутренняя задача теплообмена. Он имеет место в газлифтных трубчатых (тип РБГ) и барботажных змеевиковых (тип РБЗ) аппаратах. [c.27]

    В п. 1 были рассмотрены только общие представления о барботажных газлифтных реакторах и условиях их работы, определяющие область применения аппаратов этого типа. Содержание предлагаемой главы более подробно отражает разнообразие конструкций газлифтных реакторов и методику их расчета. [c.77]

    Наиболее простая конструкция газлифтного реактора, выполненного 3 виде колонны с центральной барботажной трубой, была показана на рис. 2. Такой аппарат, снабженный рубашкой на корпусе колонны, может быть использован для проведения химических реакций, сопровождающихся тепловым эффектом. Отличаясь простотой конструкции, он имеет один существенный недостаток — малую удельную поверхность теплообмена (отнесенную [c.77]

    Аналогичная конструкция секционированного газлифтного реактора, но с выносной зоной циркуляции и теплообмена, была разработана в институте хлорной промышленности. В этом аппарате (рис. 40) барботажная зона выполнена в виде колонны /, секционированной ситчатыми перегородками 2. В наружный циркуляционный контур включен теплообменник 3. В некоторых конструкциях теплообменники подсоединены к каждой ступени, ограниченной сверху и снизу ситчатыми перегородками. Возможность использования стандартных теплообменников упрощает технологию изготовления аппарата, а установка, например, блочных графитных теплообменных устройств позволяет работать на коррозионных средах. [c.79]

    Рассмотренные здесь многотрубные газлифтные реакторы, обладая большей удельной теплообменной поверхностью по сравнению с колонными аппаратами, имеют и свои недостатки. Прежде всего это касается сложности изготовления и большой металлоемкости. Конструктивно более совершенными следует признать газлифтные реакторы, в которых барботажные и циркуляционные трубы объединены в общем кожухе [71 ]. Два варианта таких кожухотрубных газлифтных реакторов показаны на рис. 42. [c.80]

    Распределение давлений в газлифтном реакторе. Анализ распределения давлений в газлифтном реакторе дает возможность установить уравнение для расчета сопротивления аппарата по газовой фазе и бо-подойти к зависимостям, определяющим ско-жидкости. [c.86]

    Исследования [961, проведенные на системе вода—воздух в двухтрубной модели газлифтного реактора при изменении диаметров труб от 40 до 122 мм и давлении в аппарате до 4 МПа, показали, что с достаточной для инженерных расчетов точностью опытные данные описываются уравнением [c.92]

    Хорошую сходимость с опытными данными уравнение (IV.21) дает (при > 0,3 м/с) и в случаях обработки в газлифтном аппарате суспензий с объемной концентрацией твердой фазы до 25%. [c.94]

    Скорость циркуляции жидкости. Содержание предыдущих параграфов показывает, что скорость циркуляции жидкости оказывает существенное влияние на гидродинамические характеристики газожидкостного потока в газлифтных реакторах, а следовательно, и на условия тепло-массопереноса. Поэтому одной из основных задач гидродинамического расчета этих аппаратов является определение приведенной скорости жидкости в барботажных трубах. Газлифтный трубчатый реактор работает на принципе затопленного эрлифта с естественной циркуляцией жидкости, скорость которой зависит от расхода газа, подаваемого в барботажную трубу. Типичная зависимость изменения приведенной скорости жидкости от приведенной скорости газа в барботажной трубе представлена на рис. 52. При малых скоростях вследствие быстрого увеличения газосодержания в пузырьковом и пенном режимах барботажа быстро возрастает приведенная скорость жидкости. При дальнейшем увеличении Шр наступает переход к стержневому режиму движения, при котором Фг возрастает слабо, а увлечение жидкости газовым потоком тормозится трением ее о стенку трубы, вследствие чего приведенная скорость жидкости меняется незначительно. [c.95]

    Выбор при конструировании газлифтного трубчатого реактора оптимального отношения Г = / //ц имеет существенное значение. Увеличивая конструктивный параметр Г, т. е. суммарную площадь сечения барботажных труб, мы увеличиваем реакционный объем аппарата (объем барботажной зоны). Но при этом, как следует из уравнения (1У.26), уменьшается скорость циркуляции жидкости и ухудшаются условия массопереноса реагирующего вещества из газа в жидкость. Исследования кинетики химического превращения в газлифтных трубчатых реакторах показали, что оптимальным является Г = 1. [c.98]


    Следует также отметить, что принцип работы газлифтного аппарата может быть использован и при конструировании многоступенчатых колонных экстракторов, в которых перемешивание жидкостей осуществляется барботирующим инертным газом. [c.103]

    Следует отметить, что опыты, проведенные с протоком жидкостей через аппарат, подтвердили приемлемость исходных положений вывода уравнения (П1.18). Это дает право при расчете удельной поверхности капель в проточном газлифтном реакторе в качестве времени перемешивания I принимать /ср = + V д) о введением в уравнение (1У.38) дополнительного множителя 0,693.. [c.104]

    Массообмен в газлифтных аппаратах [c.111]

    Трубчатые газлифтные реакторы относятся к аппаратам, при расчете и проектировании которых можно воспользоваться методом элементного моделирования. Суть его заключается в том, что результаты исследований массообмена, полученные на модели с одной барботажной трубой, распространимы на все трубы промышленного реактора, если в них сохраняется гидродинамическая обстановка модельных испытаний. Это условие существенно облегчает методику эксперимента, позволяя использовать в качестве объекта исследований двухтрубную модель аппарата (см. рис. 48). [c.111]

    Изложенный выше метод физического моделирования газлифтных аппаратов применим для простейших одностадийных реакций или реакций, в которых одна из стадий протекает с малой скоростью, лимитирующей общую скорость химического превращения. Более сложные химические реакции требуют для анализа специальных методов математического моделирования [30, 891. [c.113]

    Для отвода или подвода теплоты разработаны кожухотрубчатые газлифтные аппараты (рис. 1-9, в). [c.160]

    Общий вид барботажного газлифтного реактора представлен на рис. 1.11. Такой тип реактора можно считать аппаратом смешения. [c.53]

    Конструктивное исполнение газлифтных реакторов может быть различным, но независимо от конструкции в основу их работы всегда положен принцип циркуляционного контура, состоящего из восходящего газожидкостного потока и нисходящего потока жидкости с небольшим количеством захваченных ею газовых пузырей. Максимальная приведенная скорость газа в барботажных трубах, определяющая нагрузку аппарата по газу, составляет 2 м/с, что в пересчете на свободное сечение кожуха аппарата может дать скорость до 1 м/с. [c.54]

    Также достаточно эффективны при проведении таких процессов барботажные газлифтные аппараты (см. 6.7.2). В таких аппаратах образование пузырей на отверстиях может происходить при достаточно сильном восходящем движении жидкости. Это снижает время образования пузырей и, соответственно, их средний размер. Восходящее движение жидкости со скоростью до 2 м/с образуется в газлифтном аппарате за счет разности плотностей газо-жидкостной смеси в барбо-тажной трубе и жидкости с небольшим содержанием очень мелких пузырей в циркуляционной трубе. Высокие скорости движения жидкости позволяют насыщать газом несмешивающиеся жидкости с большой разницей плотностей или жидкости, содержащие твердые вещества, например порошковый катализатор. Конструкция газлифтных аппаратов позволяет размещать в них большие теплообменные поверхности, что дает возможность использовать их для проведения процессов, протекающих с большим тепловым эффектом. Вследствие большой скорости течения жидкости в барботаж-ной трубе значительно уменьшается влияние продольного перемешивания жидкости и снижается дисперсия пузырей по времени пребывания. [c.48]

    Двухпараметрическая к-е модель турбулентности, используемая в приведенной выше методике, разрабатывалась для моделирования однофазных потоков. Поэтому ее использование при моделировании течений многофазных сред оправдано лишь при малых концентрациях дисперсной фазы. При значительных концентрациях дисперсной фазы расчеты с использованием стандартных моделей турбулентности приводят к существенному расхождению результатов расчета с опытными данными. В первую очередь это относится к тем задачам, в которых движение сплошной среды осуществляется за счет энергии частиц дисперсной фазы, как, например, течение газо-жидкостного потока в газлифтных аппаратах. Как показывает анализ результатов численных расчетов газо-жидкостных потоков [12], наилучшее совпадение с экспериментальными данными обеспечивает использование значения эффективной [c.204]

    Этот способ является весьма перспективным вследствие возможности осуществления процесса в высокоинтенсивных аппаратах непрерывного действия и уменьшения капитальных и эксплуатационных расходов. В качестве реакционной среды применяют расплавленный карналлит а также смесь хлоридов калия и натрия или чистые хлориды, например, расплав Na l для. хлорирования смеси Ti02 и древесного угля при 900°. При содержании в расплаве 2% хлорного железа интенсифицируется массопере-нос хлора к поверхности частиц двуокиси титана. Установлено что количество хлора, транспортируемого растворенным хлорным железом от поверхности пузырька к твердой хлорируемой поверхности, примерно в 100 раз больше количества растворенного хлора, транспортируемого через расплав. Аналогично действует также добавка в расплав хлористого алюминия При температурах выше 750° скорость процесса хлорирования тормозится массопередачей реагирующих веществ в расплаве, окружающем пузырек хлора и твердые частицы ТЮг и кокса Процесс может быть осуществлен в барботерах, снабженных механическими мешалками, аппаратах газлифтного типа и других, в которых не происходит осаждения твердых частиц суспензии. [c.742]

    Конструкции барботажных газлифтных аппаратов. Газлифтные аппарагы отличаются от бефботажных колонн тем, что внутри их корпуса I установлены одна или несколько барботажных труб 3, в которые с помощью газораспределителя 2 вводится газ (рис. 6.4.3). При подаче газа в затопленный жидкостью апп )ат в бг)>ботажных трубах образуется газожидкостная смесь, плотность которой меньше плотности однородной жидкости в циркуляционной зоне (на рис. 6.4.3 - в межтрубном пространстве), вследствие чего в аппарате возникает циркуляция жидкости с восходящим потоком смеси внутри циркуляционной трубы и нисходящим потоком в зазоре между корпусом и циркуляционной трубой. Конструктивное исполнение газлифтных апп )атов может [c.635]

    Массоперенос реагирующего вещества от границы рездела фаз в объем жидкости в газлифтных аппаратах с диаметрами барботажных труб d = 0,04- 0,15 м характеризуется следующим уравнением  [c.277]

    Для расчета объема жидкости в газлифтном резкторе по (9.87) принимаем объем части аппарата ниже газового слоя = = 0,5 м (этот объем уточняется при конструировании аппарата) газосодержание в сепарационной части реактора при скорости газа в ней [c.288]

    Реактор барботажный газлифтный (тип РБГ). Газлифтный реактор (рис. 2) отличается от барботажной колонны тем, что внутри корпуса ] установлены одна или несколько барботажных труб 2, в которые с помощью газораспределителя 3 вводится газ. При подаче газа в заполненный жидкостью аппарат в барботажных трубах образуется газожидкостная смесь, плотность которой меньше плотности однородной жидкости в циркуляционной зоне (на рис. 2 в межтрубном пространстве), вследствие чего в аппарате возникает циркуляция жидкости с восходящим потоком смеси в барботажных трубах. Поскольку барботажная труба работает как газлифт (аналогично затопленному эрлифту), логично назвать его барботажным газлис ным реактором. Конструктивное исполнение газлифтных реакторов может быть различным (см. п. 11), но независимо от конструкции в основу их работы положен принцип циркуляционного контура, состоящего из восходящего газожидкостного потока и нисходящего потока жидкости с небольшим количеством захваченных ею газовых пузырей. Максимальная приведенная скорость газа в барботажных трубах, определяющая нагрузку аппарата по газу, составляет 2 м/с, что в пересчете на свободное сечение кожуха аппарата даст скорость до 1 м/с. [c.9]

    При математическом моделировании отдельную барботажнук> трубу можно принимать близкой к аппаратам идеального вытеснения как по жидкой, так и по газовой фазам, однако в целом реактор по жидкой фазе следует считать аппаратом идеального смешения. Одним из достоинств газлифтного трубчатого реактора является возможность использования при его исследовании метода элемент- [c.10]

    Стремление увеличить удельную поверхность теплообмена привело к конструкциям многотрубных газлифтных реакторов. Один из таких аппаратов, предложенный Кружаловым и Хчеяном [46], изображен на рис. 41. Он состоит из верхней 1 и нижней 5 цилиндрических емкостей, соединенных между собой вертикальными трубами. В центре находится циркуляционная труба 3 а по периферии — барботажные трубы 2. В каждой трубе 2 размещен барботер 4. Теплоноситель подается в рубашки, установленные на барботажных трубах. Не исключена возможность установки рубашки и на циркуляционной трубе. [c.80]

    С целью приближения аппарата к модели идеального вытеснения по жидкой фазе теми же авторами [46] был предложен многоступенчатый вариант трубчатого газлифтного реактора. В этом аппарате каждая ступень состоит из одной циркуляционной трубы и двух барботажных. Внизу эти трубы соединены коллектором, и в каждую трубу введен барботер. Вверху все трубы соединены с емкостью, разделенной вертикальными полуперегородками на отсеки — ступени. Переток жидкости из одной ступени в другую осуществляется по патрубкам, соединяющим циркуляционные трубы, причем патрубок выхода жидкости из ступени расположен выше патрубка ввода ее в циркуляционную трубу данной ступени. Этим обеспечивается хотя бы однократный проход реакционной массы через ступень. [c.80]

    Рабочий объем газлифтного реактора можно увеличить, используя для циркуляции жидкости его межтрубное пространство, как это показано на рис. 38. Такой принцип конструирования зрлифтных аппаратов используется в микробиологической промышленности при создании ферментеров больших объемов. Например, для аэробного выращивания кормовых дрожжей на гидролизных средах широко распространен ферментер Лефрансуа вы- [c.82]

    Анализ массообмена и кинетики химческих превращений в реальных процессах затруднен тем, что нет надежных рекомендаций для коэффициентов массопередачи и константы скорости реакции. Поэтому при расчете промышленных газлифтных реакторов приходится ориентироваться на экспериментальные данные, полученные на модели аппарата в условиях, близких к производственным. [c.112]

    Для интенсификации воздушного перемешивания в аппаратах устанавливают циркуляторы - газлифтные (эрлифтные) трубы, создающие многократную циркуляцию жидкости в ainiapare (рис. 7-9, б). Газлифтную трубу, открытую с обоих концов, устанавливают в центре аппарата. Воздух подают внутрь циркулятора, причем чем больше создаваемый восходящий поток, тем лучше перемешивание. [c.160]

    Конструкция барботажного кожухотрубного газлифтного реактора выполнена в виде трубчатого теплообменника с увеличенной верхней сепарирующей частью. Трубы являются или барботажвыми, или циркуляционными, причем в аппаратах с малым количеством труб может быть одна центральная [c.53]

    Интенсивная циркуляция способствует лзгчшему теплообмену между жидкостью и теплообменными поверхностями, образованными стенками барботажных труб. Возможность размещения в газлифтных аппаратах больших поверхностей теплообмена без нарушения циркуляции делает их наиболее эффективными устройствами для проведения реакций с высоким тепловым эффектом. [c.54]


Смотреть страницы где упоминается термин Аппарат газлифтный: [c.252]    [c.267]    [c.78]    [c.104]    [c.476]    [c.159]    [c.53]   
Машиностроение энциклопедия Раздел IV Расчет и конструирование машин ТомIV-12 Машины и аппараты химических и нефтехимических производств (2004) -- [ c.636 ]




ПОИСК





Смотрите так же термины и статьи:

Барботажные газлифтные аппараты

Массообмен в газлифтных аппаратах



© 2025 chem21.info Реклама на сайте