Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытия никелевым сплавам

    Для борьбы с коррозией теплообменников внутреннюю или наружную поверхность металлических труб и внутреннюю поверхность кожухов облицовывают стеклом применяют плакировку, сочетающую механическую прочность одного металла с коррозионной стойкостью другого. Так, тонкий слой нержавеющей сталп прокаткой соединяют с листом обычной углеродистой стали. Применяют иногда электролитические или химические покрытия, образующие противокоррозионную пленку на конструкционных материалах. При случае несовместимости прокачиваемой жидкости с материа.1 ами труб используют биметаллические трубы, например из никелевого сплава с одной стороны и алюминиевого — с другой. [c.270]


    Медно-никелевая матрица, заполненная свинцовистым баббитом с таким же покрытием Однородный сплав [c.378]

    Основная масса выплавляемого никеля (около 80%) используется для получения никелевых сплавов и легированных сталей (нержавеющих, бронебойных, жаростойких и др.). Из никеля изготавливают специальную аппаратуру химических производств. Он применяется также для декоративно-защитных покрытий на других металлах. Палладий и платина используются для изготовления коррозионностойкой лабораторной посуды, аппаратов и приборов химических производств, для термометров сопротивления и термопар а также электрических контактов. Из платины изготавливают нерастворимые аноды, например, для электролитического производства надсерной кислоты и перборатов. Палладий и платина применяются в ювелирном деле. [c.646]

    Основная масса выплавляемого никеля (около 80%) используется для получения никелевых сплавов и легированных сталей (нержавеющих, бронебойных, жаростойких и др.). Из никеля изготавливают специальную аппаратуру химических производств. Он применяется также для декоративно-защитных покрытий на других металлах. [c.663]

    Движение жидкостей или газов может вызвать повреждение защитной пленки на отдельных участках и, таким образом, способствовать образованию анодных участков, где будет происходить усиленная коррозия (например, струйная коррозия меди и ее сплавов, погруженных в движущуюся воду), или даже являться причиной механического повреждения самого металла (как при кавитационной эрозии). В любом случае может происходить преждевременное повреждение покрытия, вызывающее коррозию основного слоя с последующей потерей защитных слоев или даже полным отслаиванием покрытия с большой площади изделия, так как коррозия приводит к повреждению покрытия, за счет чего увеличивается турбулентность в движущейся среде. Выбором соответствующего покрытия (например, никеля или никелевых сплавов) или изменением геометрической формы изделия можно уменьшить воздействие эрозии. [c.131]

    В другом исследовательском центре ВМС США изучалось влияние наплавленного покрытия из сплава Монель на стойкость гребных валов из никелевой стали к усталостному разрушению в морской воде [139]. Вал длиной 1.8 м с таким покрытием испытывался при частоте вращения 600 об/мин и нагрузке 68.9 МПа в водах реки Северн. Испытательная установка выключалась на ночь и на выходные дни. В эти периоды вал не подвергался воздействию нагрузки, однако поверхность с покрытием находилась в контакте с морской водой. Усталостное разрушение произошло после 15,5-10 циклов, что примерно совпадает с нормой для обычного вала из никелевой стали. Таким образом, испытанное покрытие не продлевает срок службы гребного вала. [c.178]


    Радиационно охлаждаемый насадок сопла соединен с регенеративно охлаждаемой камерой сгорания в сечении со степенью расширения е = 6, и его выходное сечение соответствует степени расширения е = 55. Сопло выполнено из никелевого сплава и защищено специальным покрытием. Рулевые приводы [c.258]

    Титан как сильно электроотрицательный металл, является активным катодом в гальванической паре с железом, медью, алюминием, цинком. Контакт с титаном ускоряет коррозию углеродистой стали, латуни, алюминиево-магниевых и медно-никелевых сплавов. В паре с платиной титан пассивируется, что позволяет использовать его как основу под покрытие платиной и другими благородными металлами [36]. [c.112]

    Цинк — никелевый сплав используется в качестве подслоя на стальных деталях перед нанесением хроМ никелевых покрытий. [c.116]

    Для повышения прочности сцепления серебряного покрытия с основны металлом из коррозионно-стойких сталей и никелевых сплавов их обрабатывают в электролите следующего состава (г/л)  [c.218]

    Никелевые покрытия наносят на медь, железо и их сплавы, а также на титан, вольфрам и другие металлы. На стальные детали наносят подслой меди. Покрытия никелем могут быть блестящими, износостойкими, черными. Помимо никелевых широко применяют покрытия такими сплавами, как N1 - Со, N1 - 2п, N1 - Си, № -Ки, N1 - Ре и др. [c.112]

    Ннкель, его сплавы и никелевые покрытия следует активировать в растворе АГр I. При нанесении многослойных покрытий никелевые покрытия перед хромированием активируют в растворе № 8. [c.76]

    Микроструктура вольфрамового покрытия (Л), полученного детонационным напылением на никелевый сплав (Б), X 340. [c.211]

    Микроструктура молибденового покрытия (А), полученного детонационным напылением на никелевый сплав (Б), Х 340, [c.9]

    Замене платиновых электродов электродами из более дешевых металлов посвящено большое число работ. Кроме упомянутого авторами тантала, предлагались в кач( стве катодов сетки из вольфрама серебра хромово-никелевых сплавов , нержавеющей стали никеля, латуни, покрытой медью , и меди, покрытой серебром В качестве анодов предлагали пассивированное железо , хромированную сталь , свинец и графит Эти материалы не могут заменить платину во всех электро-аналитических осаждениях, но в отдельных случаях для осаждения того или иного металла они применялись с успехом. Доп. ред.  [c.56]

    Можно рекомендовать следующий порядок контактирования алюминиевых сплавов с другими металлами и покрытиями алюминиевые сплавы, кадмиевое покрытие, цинковое покрытие, хромовое покрытие, нержавеющая сталь типа 18-8, оловянное покрытие, никелевое покрытие, сплавы из свинца, высокохромистые стали, железо и сталь, сплавы на основе меди. [c.137]

    Комбинированное покрытие никель — сплав олово-висмут наносят на медные и латунные детали. Толщина никелевого слоя 3. .. 6 мкм, сплава олово-висмут — 6 мкм. Результаты испытаний на коррозионную стойкость и пригодность в пайке приведены в табл. 57.2. [c.690]

    В усовершенствованном в последующие годы процессе катализатор представляет собой раствор хлористого алюминия р треххлористой сурьме, также активированный безводным хлористым водородом (процесс бутамер). Для осуществления процесса в жидкой фазе применяется давление порядка 20 ат. При переработке фракций н-пептаиа и тяжелее требуется циркуляция через рсакцион [ую зону небольших объемов водорода с целью подавления побочных реакций диспропорциоиирования — образования продуктов более легких и более тяжелых, чем сырье. Реактор изомеризации углеводородов в присутствии хлористого алюминия представляет собой мешалку, имеющую покрытие из никеля или никелевого сплава . Опыт эксплуатации промышленных установок показал, что решающее значение имеет тщательный контроль за содержанием влаги в сырье, которое не должно превышать 0,001%. Помимо хлористоводородной коррозии наблюдается воздействие агрессивной среды, образуемой хлористым алюминием с небольшими примесями олефинов и сернистых соединений сырья. [c.257]

    Сплав медь—олово (бронза). Покрытие сплавом медь—олово, или бронзирование, применяют как для защиты от коррозии, так и для декоративной отделки поверхности изделий. Покрытие малооловянистьш сплавом (10—20% олова) золотисто-желтого цвета используют также в качестве подслоя взамен медного и никелевого покрытий перед хромированием. Высоко-оловянистый сплав (40—45 % олова), так называемая белая бронза, в некоторых случаях может служить заменой серебра. Несмотря на то, что значение удельного электрического сопротивления сплава Си—5п значительно выше, чем у серебра, в промышленной атмосфере, где есть примеси сернистых соединений, оно остается стабильным, в то время, как у серебра, возрастает в десятки раз. По этой причине покрытия белой бронзой рекомендуют для нанесения на электрические контакты. [c.60]


    Для осаждения покрытий из сплава, содержащего 65 % олова pzn = 0,65) и 35% никеля (pni = 0,35), использован фторид-хлоридный электролит, компонентами которого являются Sn I2, NI I2, NaF, KF и NH4F. Аноды раздельные — оловянные и никелевые. Катодный и анодный выходы по току равны 100 %. [c.183]

    Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин. [c.96]

    Разработана [29] фосфатирующая грунтовка АК-209 (бывшая ВГ-5), представляющая собой суспензию пигментов в растворе синтетических смол в смеси органических растворителей и в кислотном разбавителе. Грунтовка является однокомпонентной и предназначается для грунтования поверхностей алюминиевых сплавов, сталей, никелевых сплавов и других металлов, эксплуатируемых при температуре до 300 °С. Отличительной особенностью этой грунтовки является повышенная теплостойкость и высокие защитные свойства. Системы покрытий с крем-нийорганическими эмалями КО-88 и КО-811 по грунтовке [c.151]

    II никелевого сплава N1—22Сг—ЭМо—2Fe—3,75МЬ+Та могут нспользо ваться в течение 2 лет без катодной защиты. Фосфористая бронза, оцинкованная сталь и нержавеющая сталь 304L, плакированная сплавом 90—10 Си—Ni, требуют применения катодной защиты. Сталь 304 без покрытия и нержавеющая сталь 205, плакированная сплавом 90—10 Си—Ni, подвергались локальной коррозии даже в условиях катодной защиты. [c.204]

    НИКЕЛЯ СИЛИЦИДЫ, серебристо-белые крист. ( л для Ni2Si 1290 С, для NiS 992 °С не раств. в воде н орг. р-рителях, раств. в царской водке. Получ. сплавлениен э.пе-ментов. Компоненты жаропрочных никелевых сплавов, защитных покрытий на Мо и др. металлах. [c.378]

    Нвкель наиболее широко применяют в качестве гальванического покрытия стальных и медных изделий. По отношению к воде и воздуху при обычной температуре устойчив (при нагревании обнаруживает цвета побежалости). Он легко растворим в разбавленной азотной кислоте (в концентрированной кислоте пассивируется). При нагревании никель реагирует с галогенами, серой, мышьяком и фосфором. В щелочных растворах и расплавах стоек даже при высоких температурах. Медно-никелевые сплавы (монель-металл) стойки в растворах солей, кислот и хлор- [c.22]

    Детонациопное покрытие, полученное напылением твердого сплава ВК-15 (А) на никелевый сплав ЖС-6К (Б), X 600. [c.328]

    Металлокерамические силицидные покрытия типа Нихромолсил Стали феррит-ного, перлитного, аустенитного классов и никелевые сплавы Нииэмальхим- маш Промышленные испытания деталей калибратора в Полтавском управлении буровых работ Химическое, нефтяное и энергетическое машиностроение [c.16]

    Сплавы N1—Сг—А1 обладают высокой жаростойкостью. Используются для нанесения покрытий на никелевые сплавы. Константа параболического окисления при 1000 °С наиболее жаростойких сплавов равна 5 X X 10 кг /(м -с). Окалина многослойна. Поскольку давление диссоциации АЬ Од ниже, чем у СггОд, слой АЦОд расположен подСгаОд. Наибольшей жаростойкостью обладают сплавы, на поверхности которых при окислении образуется пленка сх-А1аОз (рис. 14.9). Поскольку пленка А12О3 при охлаждении растрескивается, на ее возобновление расходуется А1, чем и обусловливается уменьшение жаростойкости сплавов во времени. [c.425]

    Барьерное действие хромсодержащего подслоя приводит к тому, что даже после 5000 ч испытания при 1000 С покрытие толщиной 80 мкм не растворяется в основе. Сг А1 покрытия обладают более высокой усталостной прочностью, чем алюминидные. Покрытия используют для защиты лопаток авиационных ГТД [5]. Сг—А покрытия служат основой многокомпонентных покрытий, в которых сочетаются высокая термостойкость, жаростойкость и устойчивость к механическим нагрузкам. Примером может служить покрытие, получаемое алити-рованием шликерного слоя толщиной 80. .. 100 мкм, содержащего Со, N1 и Сг. Преимущество такой технологии — отсутствие в покрытии компонентов никелевых сплавов (Т1, Мо, КЬ, V), ухудшающих стойкость сплавов и покрытий, особенно при их эксплуатации в морских ГТД. Покрытие весьма устойчиво к воздействию сульфатно-хлоридных сред при 950. .. 1000 С, ударных нагрузок, а также к сульфидной коррозии. [c.435]


Библиография для Покрытия никелевым сплавам: [c.46]   
Смотреть страницы где упоминается термин Покрытия никелевым сплавам: [c.617]    [c.541]    [c.109]    [c.146]    [c.239]    [c.46]    [c.425]    [c.337]    [c.528]    [c.99]    [c.188]    [c.153]   
Защитные лакокрасочные покрытия Издание 5 (1982) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Никелевые сплавы

Сплавы покрытие сплавами



© 2024 chem21.info Реклама на сайте