Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлористый водород безводный

    В качестве катализатора изомеризации в промышленности в первую очередь используют безводный хлористый алюминий. Хлористый водород безусловно необходим как промотор этой реакции. Чистый парафиновый углеводород не реагирует необходимо наличие следов олефинов, которые всегда присутствуют в техническом продукте (вполне достаточно 1 весовой части олефина на 10 000 весовых частей парафинового углеводорода) [18]. Если реакцию проводят при достаточно высокой температуре, когда всегда образуется небольшое количество олефинов, изомеризуется и совершенно чистый продукт. Однако степень изомеризации всегда бывает больше, если к парафиновому углеводороду заранее добавлено небольшое количество олефина. [c.517]


    Из всех описанных в этой главе способов синтеза дифенилолпропана в промышленности используют только конденсацию фенола с ацетоном в присутствии кислотных катализаторов (серной или соляной кислоты, безводного хлористого водорода, ионообменных смол).. Подробно эти процессы рассмотрены в соответствующих главах. [c.104]

    Как следует из гл. II, конденсация фенола с ацетоном протекает в присутствии практически любых агентов, дающих достаточно высокую концентрацию протонов. В промышленности, кроме серной кислоты (гл. III), широко используется другая сильная кислота — соляная или безводный хлористый водород. [c.120]

    Хлористый водород безводный. ......0,1575 [c.45]

    ХЛОРИСТЫЙ ВОДОРОД БЕЗВОДНЫЙ, НС1.. А ол. вес 36.46. [c.516]

    Хлорпарафин непосредственно конденсируют в смазочный материал действием безводного хлористого алюминия или активированного алюминия. Конденсация сопровождается отщеплением хлористого водорода. Следует предположить, что в качестве промежуточного продукта образуются олефиновые углеводороды. Протекание реакции можно представить следующими уравнениями  [c.235]

    В начале реакции в колонный реактор вводят хлорированный парафин с добавкой небольшого количества безводного хлористого алюминия. Вскоре начинается выделение хлористого водорода, после чего дальнейшей добавки хлористого алюминия уже не требуется. [c.242]

    Гидрохлорирование этилена осуществляется по технологической схеме, представленной на рис. 12.13. Безводный хлористый водород и сухой этилен (90—95%) смешивают приблизительно в равных мольных пропорциях и направляют в реактор 1. Смесь газов при 35—38 °С поступает в нижнюю часть, реактора и проходит через раствор катализатора — смесь хлористого алюминия с хлористым этиленом или более высококипящим хлорированным растворителем. Тепло, выделяющееся при гидрохлорировании, отводится охлаждающими змеевиками. Для обеспечения жидкофазного состояния продуктов реакции требуется давление около 275 кПа. Избыток жидкости из реактора перетекает в подогреватель, а затем — в испаритель 2. Пары хлористого этила (и растворителя) направляются в систему очистки. Жидкость из испарителя перекачивают в промежуточный бак 4, куда добавляют свежий хлористый алюминий, после чего охлажденная смесь поступает в реактор 1. Пар, выходящий из испарителя, содержит небольшое количество метана, этилена, хлористого водорода и хлорированных углеводородов. Хлористый водород удаляют промывкой водой в скруббере 3, а органические компоненты в виде пара подают в ректификационную колонну 5. При отдувке из колонны удаляются неконденсирующиеся газы, а хлористый этил и воду отбирают как дистиллят. Продукт сушат декантацией и отправляют на склад. [c.407]


    Эффективны два типа катализаторов кислого характера безводные соли галоидоводородных кислот типа Фриделя — Крафтса и кислоты, способные к переносу протона. В качестве примеров катализаторов первого типа можно привести хлористый алюминий, бромистый алюминий, хлористый цирконий и фтористый бор газообразный хлористый водород используется в качестве промотора этих катализаторов. Серная кислота и жидкий фтористый водород являются главными катализаторами второго типа. Как соли галоидоводородных кислот, так и переносящие протоны кислоты переходят в нижние слой или осадки , которые представляют собой комплексы, получающиеся в результате соединения катализаторов [c.304]

    Пентаны подвергаются осушке контактированием с хлористым водородом, образующимся на стадии хлорирования. Безводные пентан и хлор испаряются (по отдельности), а затем тщательно смешиваются. Смешение компонентов следует производить при [c.85]

    Высокую активность в этом процессе проявляют сильные минеральные кислоты (серная, соляная) и безводный хлористый водород— при 40—75 °С, мольном отношении фенола к ацетону от [c.63]

    IV — перхлорэтилен V — безводный хлористый водород. [c.395]

    Индийские исследователи изучали кинетику реакции в присутствии безводного хлористого водорода и различных промоторов (этил-, бутил- и гексилмеркаптана, а также тиогликолевой кислоты). По ходу процесса определяли концентрации ацетона и дифенилолпропана, а количество фенола рассчитывали по количеству дифенилолпропана, считая, что фенол реагирует с ацетоном точно по стехиометрическому соотношению и не расходуется на образование побочных продуктов. Авторы, предположив, что реакция образования дифенилолпропана подчиняется уравнению второго порядка [c.86]

    Однако попытки проведения такого синтеза показали что реакция протекает очень медленно и с невысоким выходом дифенилолпропана. В присутствии 72,5%-ной серной кислоты и этилмеркаптана за длительное время реакции (несколько дней) выход дифенилолпропана составил всего 31,6% (в расчете на гидроперекись), а без добавления этилмеркаптана дифенилолпропан не был получен совсем. При использовании безводного хлористого водорода с добавкой этилмеркаптана за 310 ч выход дифенилолпропана не превысил 35,2%. Невысокий выход дифенилолпропана, по-видимому, объясняется тем, что образование его протекает все-таки в две стадии разложение гидроперекиси на фенол и ацетон и последующая конденсация их в дифенилолпропан  [c.102]

    Т аблица 11. Активность концентрированной соляной кислоты и безводного хлористого водорода при 20 °С [c.120]

    При проведении изомеризации в промышленных условиях в качестве катализаторов применяют главным образом платину или безводный хлористый алюминий, промотированный хлористым водородом. Наибольшее распространение получил платиновый катализатор. Объясняется это тем, что при использовании хлористого алюминия последний образует с углеводородами комплексное соединение, которое сильно корродирует аппаратуру. Недостатком платинового катализатора является необходимость проведения процесса на индивидуальных углеводородах, что требует дополнительных расходов на их разделение. [c.141]

    В промышленности США применяются пять процессов изомеризации бутана, причем два из них проводятся в газовой фазе и три в жидкой. Процессы различаются главным образом по способу подачи катализатора и сырья в реактор. Во всех процессах катализатором является безводный хлористый алюминий, промотированный хлористым водородом. Хлористый алюминий в некоторых процессах применяется на носителе. Использование носителя повышает активность катализатора и уменьшает смолообразование. Срок работы катализаторов на носителе значительно выше, чем без него. [c.146]

    Фирма Шелл проводит процесс изомеризации бутана как в паровой, так и в жидкой фазе. В первом случае катализатором служит хлористый алюминий на боксите. Приготовленный катализатор загружают в реактор, куда подается к-бутан в смеси с безводным хлористым водородом. Реакция сопровождается выделением тепла, которое отводится при помощи хладагента. [c.147]

    Различные хлорорганические отходы (в том числе тяжелые остатки от предыдущего способа переработки и циклические хлор-органические продукты, не поддающиеся газофазному расщеплению, а также кислородсодержащие соединения) можно подвергать хлоролизу в жидкой фазе при 550—600 °С, 20 МПа и времени контакта a20 мин. При однократном проходе через пустотелый реактор, рассчитанный на работу при высоких давлении и температуре, образуются четыреххлористый углерод, гексахлорэтан, гексахлорбензол, а из кислородсодержащих соединений — фосген. После дросселирования смеси отделяют тяжелые продукты и возвращают их на реакцию, а из остальной смеси выделяют четыреххлористый углерод, фосген, хлор (возвращаемый на реакцию) и безводный хлористый водород. [c.152]


    Схема производства хладона-11 и хладона-12 с получением побочного хлори стого водорода представлена на рис. 12.24. Одностадийный процесс совместного хлорирования и фторирования метана безводным фтористым водородом и сум хлором ведут в реакторе 1 с псевдоожиженным слоем катализатора при 370- 450 °С и давлении 392—588 кПа. В колонне 2 выделяют непрореагировавшие про дукты и направляют на рецикл в реактор 1. Дистилляционная колонна 3 служи для извлечения хлористого водорода. Затем смесь хлорфторметанов в серии абсорбционных колонн 4—6 промывают, сушат каустиком и серной кислотой, [c.427]

    Раствор 0,04 моль трет-бутилпероксида и соляной кислоты (или безводного хлористого водорода) в циклопарафине выдерживали при 130—140 С в течение 4 ч в стеклянной ампуле, помещенной во вращающийся автоклав (типа автоклава Ипатьева), под давлением этилена [c.134]

    Как следует из табл. 1, в присутствии хлористого водорода (безводного и в виде водного раствора) значительно увеличивается выход этилциклогексана и снижается образование более вы-сококиия щих продуктов. [c.135]

    Диизопропилиден-а-й -глюкофуранозу можно получить путем конденсации а-с(-глюкозы с безводным ацетоном также и в присутствии серной кислоты и безводного медного купороса , а кроме того из р-с -глю-козы путем конденсации с ацетоном в присутствии следующих конденсирующих агентов хлористого водорода безводного медного купоро-са 1, пятиокиси фосфора . [c.829]

    При обезвоживании хлорид кальция частично гидролизуется с образованием окиси кальция и хлористого водорода. Безводный хлорид кальция растворяется в воде со значительным выделением тепла, гексагидрат — с поглош,ением тепла. Хлорид кальция растворим в низших спиртах и жидком аммиаке, образуя с ними сольваты, а также в ацетоне. [c.12]

    ХЛОРИСТЫЙ ВОДОРОД БЕЗВОДНЫЙ, НС1. Мол. вес 36,46. Отец и сын Брауны И1 сконструировали хороший автоматический генератор водорода из боргидрида натрия и хлористого водорода для восстановления ненасыщенных соединений. Позднее старший Браун и Рей [2] использовали этот прибор для превращения реакаиоиноспособных третичных спиртов в хлориды и для гид-рохлорирования некоторых олефинов. Хлористый водород получается автоматически, и образование его прекращается по окончании реакции. Таким образом, оказывается возможным следить за скоростью расхода хлористого водорода и превращать практически количественно спирт или олефин в конечный продукт, который при этом не подвергается действию избыточного количества гидрохлорирующего агента. [c.516]

    Реакция протекает в присутствии кислотных катализаторов (введение сокатализатора не требуется). При пропускании безводного хлористого водорода в смесь фенола и 2,2-бис-(н-бутилтио)-пропана Б мольном соотношении 4 1 при 20—25 °С за время реакции 1 ч выход дифенилолпропана достигает 94,6% в расчете на 2,2-бис-( -(бутилтио)-пропан. Реакция интересна тем, что при низкой температуре она протекает с большой скоростью и позволяет достигать вы- содих выходов за короткое время. [c.101]

    Хлорид марганца можно получить упариванием раствора Mn l2 досуха с последующим прокаливанием осадка в отсутствие воздуха или в токе хлористого водорода. Безводный хлорид марганца получают взаимодействием карбоната марганца с хлористым водородом, пропусканием хлора над смесью монооксида или карбоната марганца и угля, действием СО и СЬ на диоксид марганца при 450—500 С. Водный раствор хлорида марганца получают растворением марганца или карбоната марганца в соляной кислоте. [c.375]

    Пайные ко.чичества различных веществ, об которых будет идти речь в этой статье, суть следующие сера 32, железный колчедан 60, сернистый газ 64, серная кислота 98, безводная сернонатровая соль 142, поваренная соль 117, безводная прокаленная сода 106, едкий натр 80, кристаллическая сода 286, хлористый водород (безводная соляная кислота) 73, хлор 71, белильная известь 127. Следовательно, если бы продукты были вполне чисты и превратились бы вполне друг в друга, то из 60 пудов колчедана получилось бы 98 пудов купоросного масла, пошлс бы в дело 117 пудов поваренной соли, получилось бы 142 части сернонатровой соли или 106 пудов прокаленной соды и 127 пудов сухой белильной извести. В основании практики лежат эти числа, но в действительности они бывают иными от нечистоты первоначальных и происходящих веществ и от неполного превращения. Приложенные цифры служа-], однако, пределом, к которому практика может и стремится подойти. [c.29]

    В противоположность этому легко и гладко протекает взаимодействие продуктов хлорирования парафиновых углеводородов с ароматическими углеводородами (реакция Фриделя—Крафтса) и их дегидрохлорирование с образованием олефинов. При первой реакции возможно п ютекание двух видов взаимодействия, которые приводят к образованию целевого продукта. Поэтому подобная реакция дает удовлетворительные результаты. Наряду с обычной реакцией Фриделя—Крафтса, при которой хлористый алнил ведет себя обычным образом, возможно также дегидрохлорирование с образованием олефина. Однако в присутствии хлористого водорода и безводного хлористого алюминия этот о 1ефин в равной степени гладко алкилирует ароматический углеводород. [c.234]

    Возможность образования соединения Дианина из 2,2,4-трп-метилхромена-3 и фенола была подтверждена авторами при проведении прямого синтеза дифенилолпропана в присутствии безводного хлористого водорода. Таким образом, если реакция проходит по этой схеме, то в побочных продуктах можно обнаружить и 2,2,4-триметилхромен-3. Что же касается соединения Дианина, оно всегда присутствует в неочищенном дифенилолпропане. [c.73]

    Описанные ранее процессы характеризуются довольно высокими температурами. Выход углеводородов сильно разветвленного строения за один проход получается сравнительно невысокий, в связи с чем приходится из продуктов реакции выделять углеводороды нормального строения и возвращать их снова на реакцию. Разработанный фирмой Стандарт ойл процесс (процесс изомейт) лишен указанного недостатка, поскольку он проводится при низкой температуре — от 93 до 120°, которая способствует получению изомеров сильно разветвленного строения. Катализатором является хлористый алюминий, промотированный безводным хлористым водородом. Сырьем для процесса могут служить пентан-гексановые или узкие гексановые фракции. Указанным способом может перерабатываться также и бутан-пентановая фракция. Процесс проводится в присутствии водорода. [c.145]

    В ируглодонную колбу, снабженную мешалкой с ртутным затвором, тер мометром и обратным холодильником, вносят 250 мл бензина или лигроина (не содержащего ароматических), 22,65 г нафталина, 150 г хлорпарафина (т. заст. —7° С содержание хлора 10,5%) и прь перемешивании и нагревании до 70° С постепенно в течение 0,5 ч добавляют туда же Юг безводного хлористого алюминия. Во время реакции выделяется хлористый водород, который удаляют через обратный холодильник и счетчик пузырьков в поглотители со ш,елочью. Реакция продолжается 5—б ч и протекает при 60—70" (1. [c.379]

    Крекинг-дистиллят переносят в делительную вором ну, тщательно промывают водой до нейтральной реакции от хлористого водорода (реакция на конго), выливают в колбу, обеавожп-вают безводным хлористым кальцием, фильтруют и перегоняют ва фракции 95—122 и 122—150 °С. Обе фракции и остаток взве-I швают [c.436]

    Значительное применение в качестве катализатора нашел бел-водиый хлористый водород — также в присутствии промоторов, которыми кроме тиогликолевой кислоты могут служить меркаптаны и H2S. Синтез ведут при 50—60°С, насыщая смесь фенола с ацетоном безводным хлористым водородом, вместе с которым вво дят I промотор. Этот метод имеет большие преимущества перел сернокислотным, но тоже связан со значительной коррозией апиа ратуры и образованием кислотных сточных вод. [c.551]

    Ргс. 12.13. Схема производства хлористого этила из этилена и безводного хлористого водорода (фирма Shell Oil)  [c.408]

    Более 100 лет назад Фридель и Крафте установили [32], что при добавлении небольшого количества безводного алюминийхло-рида к амилхлориду на холоду начинается мгновенное и бурное выделение газа. Этот газ представляет собой смесь хлористого водорода с насыщенными углеводородами, которые не поглощаются бромом. Природа этих углеводородов была не вполне понятна. В ходе настоящего исследования в ряде случаев появлялись продукты прямого восстановления алкилхлоридов. Хотя имеется много данных о поведении алкилхлоридов в кислой и сверхкис-лой средах, можно полагать, что превращение низших алкилхлоридов (С,—Сз) в соответствующие парафины (как было найдено при анализе парвичиых газообразных продуктов) наблюдается впервые. Реакция протекает с достаточно высоким выходом (до 34%) путем прямого переноса гидрид-ионов. [c.157]

    В усовершенствованном процессе в качестве катализатора использовали раствор 3—8% А I3 в хлориде сурьмы (III), активи-роваиный безводным хлористым водородом около 5% (масс.). Температуру поддерживали на уровне (15—100°С. Для осуществления процесса в жидкой фазе применяли давление 2 МПа. Хотя потери хлорида алюминия несколько снизились, расход катализатора оставался достаточно высоким 1—2 5 кг AI I3 и 0,15 кг 8ЬС1з на 1 м жидкого изомеризата. Усовершенствованный катализатор также вызывал коррозию оборудования. [c.261]


Смотреть страницы где упоминается термин Хлористый водород безводный: [c.906]    [c.520]    [c.105]    [c.389]    [c.458]    [c.268]    [c.379]    [c.476]    [c.392]    [c.408]   
Смотреть главы в:

Реагенты для органического синтеза Т.5 -> Хлористый водород безводный

Реагенты для органического синтеза Том 5 -> Хлористый водород безводный




ПОИСК





Смотрите так же термины и статьи:

Безводный

Хлористый водород



© 2025 chem21.info Реклама на сайте