Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защитные покрытия на алюминиевых сплавах

    В гальваностегии медные покрытия применяются для защиты стальных изделий от цементации, для повышения электропроводности стали (биметаллические проводники), а также в качестве промежуточного слоя на изделиях из стали, цинка и цинковых и алюминиевых сплавов перед нанесением никелевого, хромового, серебряного и других видов покрытий для лучшего сцепления или повышения защитной способности этих покрытий. Для защиты от коррозии стали и цинковых сплавов в атмосферных условиях медные покрытия небольшой толщины (10—20 мкм) непригодны, так как в порах покрытия разрушение основного металла будет ускоряться за счет образования и действия гальванических элементов. Кроме того, медь легко окисляется на воздухе, особенно при нагревании. [c.396]


    Анодное окисление. Лакокрасочные материалы имеют плохую адгезию к алюминиевым сплавам, особенно в условиях повышенной влажности. Для улучшения адгезии и повышения защитных свойств лакокрасочных покрытий алюминиевые сплавы подвергают анодному окислению. Анодным окислением, или анодированием, называют процесс электрохимической обработки алюминия и его сплавов в электролите для получения на поверхности оксидной пленки. В качестве электролитов применяют серную кислоту, реже — хромовую и щавелевую кислоты. [c.215]

    На состав и строение пленок при пассивации оказывает влияние материал покрытия. Методом рентгенографии авторы работы [49] изучали состав хроматных пленок на стали с А1-2п-по-крытием, обладающим более высокими защитными свойствами в коррозионно-активных средах, чем покрытия на основе 99,9 % Zn. Для сравнения изучали пленки на алюминиевом сплаве 3003, плакированном алюминием. Было показано, что пленки на А1-и А1-7п-покрытиях обладают более высокой термодинамической стабильностью, чем пленки на цинковом покрытии, и состо- [c.50]

    Для защитного покрытия алюминиевых сплавов и текстолита [c.29]

    Наилучшим решением, обеспечивающим искробезопасную работу вентиляторов, изготовленных из алюминиевых сплавов, является нанесение защитных искробезопасных покрытий на детали проточной полости. Такие покрытия имеют вентиляционные агрегаты 1 ВАВ 2,5 1 ВАВ 3,2 1 ВАВ 4 и др. [c.55]

    При получении покрытия из расплава в ванну с расплавленным алюминием обычно добавляют кремний, чтобы затруднить образование слоя хрупкого сплава. Полученные из расплава покрытия используют для повышения устойчивости к окислению при умеренных температурах таких изделий, как отопительные устройства и выхлопные трубы автомобилей. Они стойки к действию температуры до 480 °С. При еще более высоких температурах покрытия становятся огнеупорными, но сохраняют защитные свойства вплоть до 680 °С [21]. Использование алюминиевых покрытий для защиты от атмосферной коррозии ограничено вследствие более высокой стоимости по сравнению с цинковыми, а также из-за непостоянства эксплуатационных характеристик. В мягкой воде потенциал алюминия положителен по отношению к стали, поэтому покрытие является коррозионностойким, В морской и некоторых видах пресной воды, особенно содержащих С1" и SO4", потенциал алюминия становится более отрицательным и может произойти перемена полярности пары алюминий—железо. В этих условиях алюминиевое покрытие является протекторным и катодно защищает сталь. Показано, что покрытие из сплава А1—Zn, состоящего из 44 % Zn, 1,5 % Si, остальное — Al, имеет очень высокую стойкость в морской и промышленной атмосферах. Оно защищает также от окисления при повышенных температурах. [c.242]


    МЕДНЕНИЕ — нанесение слоя меди на поверхность металлических изделий. Осуществляется электролитическим способом. В гальваностегии медное покрытие защищает стальные изделия от цементации, повышает электропроводность стали (в биметаллических проводниках), служит промежуточным слоем, улучшающим сцепление и повышающим защитную способность никелевых, хромовых и др. покрытий, наносимых на изделия из стали, цинка, цинковых и алюминиевых сплавов. Перед меднением поверхность изделий очищают от жировых и окисных загрязнений. [c.784]

    Применение <1-металлов П группы. Цинк выпускают двух видов цинковая пыль и литой цинк. Цинковая пыль представляет собой конденсат непосредственно из газовой фазы, довольно загрязненный ( d, As). Применяют как восстановитель в химической технологии. Литой цинк выпускают нескольких марок по ГОСТу. Идет на изготовление сплавов латуней, алюминиевых сплавов и сплавов на основе никеля. Основная масса цинка расходуется на защитные покрытия черных металлов от коррозии. Эти покрытия можно наносить различными методами окунанием, металлизацией, диффузионным путем и электролитически. Из цинка изготовляют сухие элементы (см. гл. 9). Сам по себе цинк не является конструкционным материалом из-за хрупкости в определенном интервале температур. [c.393]

    Чем больше разнятся друг от друга по химической активности два соприкасающихся металла, тем сильнее корродирует более активный из них и тем надежнее защищен от коррозии второй, менее активный металл. Поэтому недопустимо, например, наличие в конструкции из алюминиевого сплава деталей из меди и ее сплавов (см. положение алюминия и меди в электрохимическом ряду напряжений). Если же таких вредных контактов в конструкции нельзя избежать, то стараются обезвредить эти контакты, например, нанесением на них лакокрасочных покрытий. Защитным действием более активных металлов на менее активные пользуются для предохранения от коррозии подземных трубопроводов и корпусов судов. К трубопроводам присоединяют, а с борта судна при длительных стоянках опускают в воду слитки из сплавов металлов, расположенных близко к началу ряда напряжений — магния или цинка. [c.164]

    Пористость. Основной характеристикой, определяющей защитные свойства катодных покрытий, является их пористость В связи с тем, что N1 — Р-покрытия — катодные по отношению ко многим машиностроительным материалам (таким, как сталь, алюминиевые сплавы и др ), исследователи уделяют большое внимание пористости никелевого покрытия, осажденного химически Установлено, что химические N1 — Р-покрытия менее пористые, чем покрытия той же толщины но полученные электрохимическим способом. При определении пористости никелевых покрытий различной толщины было обнаружено [2], что химически восстановленные никелевые покрытия толщиной 8—10 мм по пористости соответствовали электролитическим осадкам толщиной 20 мкм [c.11]

    Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде. [c.109]

    Лакирование поверхностей деталей из алюминия и алюминиевых сплавов. Покрытия на основе АС-16 обладают лучшим глянцем, и защитными свойствами, чем покрытие на основе АК-ПЗ [c.113]

    Коррозия металлов в других типах вод в основном подчиняется закономерностям, рассмотренным для морской воды с учетом особенностей, связанных с ионным составом, температурой и биологическим фактором конкретной водной среды. В пресной воде с малым содержанием растворимых солей скорость коррозии всех материалов уменьшается. Отсутствие в воде ионов хлора позволяет успешно применять хромистые и хромоникелевые стали, алюминиевые сплавы без опасности возникновения язвенной коррозии. Отличительной особенностью пресной воды является ее меньшая электропроводность, что приводит к уменьшению опасности контактной и щелевой коррозии. Отсутствие в воде галоидных ионов повышает характеристики коррозионно-механической прочности, стойкость защитных лакокрасочных покрытий. [c.30]


    Наиболее надежным путем защиты от КР изделий из высокопрочных алюминиевых сплавов является применение стойких против КР сплавов и подходящих термообработок. Если такой подход к решению проблемы невозможен и к материалам предъявляются другие требования, должны быть приняты соответствующие защитные меры (если сплавы используются в состоянии, чувствительном к КР). Меры защиты включают обработку металлической поверхности (особенно дробеструйной обработкой) и нанесение покрытия. Очевидно, что оценка эффективности обработки поверхности как защитной меры от КР может быть сделана только на гладких образцах. Это один из случаев, когда не могут быть использованы образцы с предварительно нанесенной трещиной. Однако ситуация может измениться, когда изучаются схемы с наружным покрытием и ингибиторы. [c.302]

    Одним из наиболее эффективных способов защиты от КР высокопрочных алюминиевых сплавов является обработка поверхности дробью. Наибольший эффект достигается при использовании этого метода в комбинации с защитными покрытиями. Данный способ может быть использован для восстановления нарушений или при изготовлении изделий [247]. [c.302]

    Принцип защитного действия неметаллических покрытий основан на изоляции металла от действия коррозионной среды. Требования к таким покрытиям непроницаемость, устойчивость в коррозионно-активных средах. Недостаток покрытий — механическая повреждаемость. Для алюминиевых сплавов целесообразно анодирование с последующим покрытием лаком на синтетической резине 14]. [c.598]

    Стандарт устанавливает методы ускоренных испытаний алюминия и алюминиевых сплавов без защитных покрытий на общую коррозию для получения сравнительных данных о коррозионной стойкости [c.636]

    Стандарт устанавливает методы ускоренных испытаний алюминиевых и магниевых сплавов без защитных покрытий на коррозионное растрескивание [c.636]

    В гальванотехнике медь широко применяется в основном как подслой при многослойном защитно-декоративном покрытии на изделиях из стали, цинка, цинковых и алюминиевых сплавов, перед нанесением никелевого, хромового и других видов покрытий. Пластичность, хорошее сцепле1лие, низкая пористость первого медного слоя позволяют улучшить коррозионную стойкость покрытий и снизить толщину слоев более дефицитных металлов. [c.298]

    Стандарт устанавливает методы ускоренных испытаний и критерии оценки стойкости алюминия и алюминиевых сплавов без защитных покрытий к межкристаллитной коррозии [c.637]

    Стандарт устанавливает метод ускоренных испытаний и критерии оценки стойкости алюминиевых сплавов без защитных покрытий ва расслаивающую коррозию [c.638]

    При изучении поведения металлов с защитными покрытиями ни показатель изменения массы, ни глубинный показатель не дают надежных результатов. Поэтому часто определяют время появления первого очага коррозии. Этот метод, как отмечает Г. В. Акимов (1], применим в тех случаях, когда очаг ясно выделяется на фоне неизменившейся поверхности, например при коррозии стальных изделий, покрытых защитными пленками (металлическими, лакокрасочными, фосфатными, оксидными), а также нержавеющих сталей и алюминиевых сплавов. [c.114]

    Весьма эффективны при защите алюминия, и в особенности алюминиевых сплавов, содержащих тяжелые металлы, различные металлические покрытия. По Маху [43], защитная роль металлического покрытия определяется не только положением металла в ряду напряжений и разностью потенциалов между защищаемым металлом и металлом покровного слоя, но также и способностью покрытия к образованию прочно сцепленного, нерастворимого и плотного слоя, а также степенью его пористости. При равной пористо- [c.516]

    Поверхность алюминиевых сплавов обычно покрыта плотной защитной пленкой окисла алюминия, которая затрудняет зажигание и поддержание дуги при сварке, а также препятствует сплавлению [c.216]

    Нефтепроводы из алюминиевых сплавов, ввиду их коррозионной устойчивости в атмосфере и воде, можно прокладывать без защитных покрытий и окраски. Легкость алюминиевых труб снижает стоимость их укладки, по сравнению со стальными трубами. Кроме того, трубы из алюминиевых сплавов имеют высокую чистоту обработки внутренней поверхности, в результате чего уменьшаются потери напора на трение жидкости, которые могут быть на 10% ниже, чем в стальных трубах. Вес труб из алюминиевого сплава приблизительно в 3 раза меньше веса соответствующих стальных труб. Поэтому, несмотря на относительную высокую стоимость, в ряде случаев целесообразнее применять алюминиевомагниевые-трубы [87]. [c.222]

    Поверхность алюминиевых сплавов обычно покрыта плотной защитной пленкой окисла алюминия. Эта пленка затрудняет зажигагиге и поддержание дуги при сварке, а также препятствует сплавлению основного и присадочного металла. Перед аргоно-дуговой сваркой эта пленка должна быть по возможности удалена с поверхности алюминиевой детали механическим или химическим путем. [c.183]

    Хорошие результаты дает применение трубопровода из алюминиево-магние-вых сплавов для транспортировки сернистых нефтей и газов. В ряде случаев (при прокладке во влажных щелочных грунтах) трубопроводы из алюминиевых силавов необходимо изолировать. Однако, изоляции такого трубопровода в 2—3 раза дешевле соответствующего защитного покрытия на стальных трубах, Для строительства газопроводов можно использовать алюмпииево-магни-ево-цинковый сплав марки В-92. Толщина стенки трубы из этого сплава ие больше, чем у стальных, при расчете на давление 50 кГ1см . [c.188]

    N1—Р покрытия нанесенные на алюминиевь е сплавы, обеспечивают хорошую смачиваемость обрабатываемых участков при поями, что способствует получению доброкачественных паяных швов при помощи так называемых мягких припоев тес низкой температурой плааления чем исключается опасность разупрочнения алюминиевого сплава или коробления конструки,ии Обладая высокими защитными свойствами, они позволяют также получать стойкие в коррозионном отношении паяные соединения Толщина N1—Р-слоя в этом случае должна быть не менее 20 мкм Покрытие наносят по описанной выше технологии Пайку деталей из алю миииевого сплава Д1б с N1—Р покрытием осуществляют паяльником с применением стандартного оловянно-свинцового припоя ПОС-61 и флюсом на основе хлористого цинка с добавлением хлористого аммония. [c.33]

    Судостроение, а позднее и сооружение портов являются одними из старейших областей применения катодной защиты от коррозии (см. раздел 1.3). Для судов и сооружений, располагаемых в прибрежном шельфе, пока применяют преимущественно протекторную защиту, тогда как для портовых сооружений и мостовых перегружателей ввиду потребности в большом защитном токе предпочитают применять станции катодной защиты. Характерные проблемы коррозии для сооружений в прибрежном шельфе встретились уже в середине 1950-х гг. в Мексиканском заливе. Однако скорость коррозии здесь была меньшей по сравнению с наблюдаемой в Северном море (см. табл. 17.2). В допол-нение к этому на передний план все более выступают проблемы усталостного коррозионного растрескивания [13]. В отличие от свайных причалов н судов, на сооружениях в прибрежном шельфе в большинстве случаев не применяют никаких защитных покрытий или используют только временные покрытия. Защита от коррозии обеспечивается по катодной схеме. Значение токоотдачи (в ампер-часах) протекторов из алюминиевых, магниевых и цинковых сплавов согласно данным табл. 7.2—7.4 относятся как 3,1 1,4 1. Напротив, цена этих протекторов (в марках за 1 кг) относится как 1,3 2,8 1, так что удельные затраты в марках ФРГ на 1 А-ч находятся между собой в соотношении 1 2,4 4,7 и наиболее выгодными оказываются алюминиевые протекторы. Многолетние наблюдения за протекторами трех типов в Мексиканском заливе показали, что затраты на них относятся между собой как 1 3,5 2 [13]. Таким образом, магниевые протекторы для использования в прибрежном шельфе неэкономичны. Защита цинковыми протекторами обходится дороже защиты алюминиевыми протекторами. [c.421]

    Разработана [29] фосфатирующая грунтовка АК-209 (бывшая ВГ-5), представляющая собой суспензию пигментов в растворе синтетических смол в смеси органических растворителей и в кислотном разбавителе. Грунтовка является однокомпонентной и предназначается для грунтования поверхностей алюминиевых сплавов, сталей, никелевых сплавов и других металлов, эксплуатируемых при температуре до 300 °С. Отличительной особенностью этой грунтовки является повышенная теплостойкость и высокие защитные свойства. Системы покрытий с крем-нийорганическими эмалями КО-88 и КО-811 по грунтовке [c.151]

    Применение. А. используют гл. обр. для получения алюминиевых сплавов. Чистый А.-конструкц. материал в стр-ве жилых и обществ, зданий, с.-х. объектов, в судостроении, для оборудования силовых подстанций и др Применяют А. также для изготовления кабельных, токопроводящих и др. изделий в электротехнике, корпусов и охладителей диодов, спец. хим. аппаратуры, товаров народного потребления и др. Покрытия из А. наносят на стальные изделия для повышения их коррозионной стойкости. Способы нанесения распыление (для защиты стальных конструкций, эксплуатирующихся в приморских зонах, на хим предприятиях и др.) погружение в расплав (для получения алюминированных стальных лент) плакирование прокаткой (биметаллич. ленты) вакуумное напыление (для алю-минирования лент из стали, тканей, бумаги и пластмасс, инструментальных зеркал и др.) электрохим. способ (для получения материалов и изделий с защитно-декоративными св-вами). [c.117]

    По мнению Ашкенази и Джойса [54], для защиты от контактной коррозии необходимо, чтобы все алюминиевые сплавы анодировали и покрывали защитными покрытиями. Плотно прилегающие поверхности должны иметь хотя бы один слой цинкхроматного грунта. Всячески необходимо избегать контакта алюминиевых сплавов со сплавами на основе меди. Если все же такой контакт необходим, то конструкции из медных сплавов должны покрывать кадмием, по возможности фосфа-тировать и окрашивать. Места контакта со сталью следует защищать, как и в случае с медными сплавами, хотя этот контакт и менее опасен. В жестких условиях эксплуатации желательно применять уплотнения из синтетического каучука, этилцеллюлозы, полиэтилена и найлона. [c.137]

    Точечная коррозия сварных соединений типична для пассивирующихся металлов и сплавов (алюминиевые сплавы, хромоникелевые стали и др.), связана с нарушением защитных пленок при сварке преимущественно в зоне термического влияния. Основной способ борьбы — зачистка сварных соединений после сварки с последующим нанесением защитных покрытий. [c.513]

    Мягкая сталь и все сплавы с ней легко ржавеют под действием внешней среды. При использовании мягкой стали в авиастроении применяют защитные покрытия. Чтобы краска держалась долго, необходимо полно стью удалить с поверхности металла чешуйки и грязь. При металлическом покрытии (гальваностегия или покрытие кадмием) во избежание быстрого износа последнего обычно требуется дальнейшая защита органическим материалом. Это особенно относится к алюминиевым сплавам, где цинк приносится в жертву коррозии, причем скорость поражения увеличивается при наличии малого анода (цинковое покрытие) и большого катода (алюминиевый компонент). Может быть предусмотрено также окрашивание применяемога стального оборудования алюминиевой краской. [c.249]

    Наконец, следует упомянуть о серии статей, посвященных методам исследования сплавов применительно к условиям работы атомных реакторов, а также защитных свойств покрытий. В работе И. Л. Розенфельда с сотрудниками излагаются электрохимические методы исследования окисных пленок, возникающих на поверхности алюминиевых сплавов в высокотемпературной воде, основанные на определении импеданса электродов, толщины барьерного слоя, тангенса угла диэлектрических потерь и критерия защитной способности. Эти же методы успешно применяются при изучении защитных свойств полимерных покрытий. Особенно плодотворным оказался метод исследований дисперсии емкости и сопротивления с частотой, позволяющий объективно оценивать защитные свойства покрытий (см. статью И. Л. Розенфельда, К. А. Жигаловой и В. Н. Бурьяненко). [c.7]

    Применение ii-металлов II группы. Цинк выпускают в двух видах цинковая пыль и литой цинк. Первая представляет собой конденсат непосредственно из газовой фазы, довольно загрязненный ( d, As). Применяется как восстановитель в химической технологии. Литой цинк выпускается нескольких марок по ГОСТу. Идет на изготовление сплавов латуней, алюминиевых сплавов АЦМ и сплавов на осно- ве никеля. Основная масса цинка расходуется на защитные покрытия черных металлов от коррозии. Эти покрытия можно наносить различными методами окунанием, металлизицией, диффузионным путем и электролитически. [c.394]


Смотреть страницы где упоминается термин Защитные покрытия на алюминиевых сплавах: [c.193]    [c.483]    [c.70]    [c.127]    [c.363]    [c.178]    [c.69]    [c.681]   
Морская коррозия (1983) -- [ c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Сплавы алюминиевые

Сплавы покрытие сплавами

алюминиевый



© 2024 chem21.info Реклама на сайте