Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массообмен законы

    Массообменные (диффузионные) процессы, скорость этих процессов определяется законами массопередачи. [c.49]

    Влияние отсоса (вдува) на массообмен определяется изменением общего расхода газа в канале, деформацией профиля осевой скорости и конвекцией в радиальном направлении. Представляя результаты расчета в форме относительного закона массообмена = Ф (Ь ), необходимо сравнивать числа Стентона St" при таких значениях продольной координаты J и Х°, которые соответствуют одинаковым локальным значениям рас- [c.133]


    При проектировании установок сжижения определяются условия процесса и поверхность, которая обеспечивала бы массообмен между фазами за определенный отрезок времени. В основу расчета положены законы фазового состояния и однократного испарения, материальный и энергетический балансы, анализ процесса массообмена. [c.13]

    I. Гидравлические процессы связаны с перемещением жидких и газообразных материалов. К ним относятся перекачивание, транспортирование, хранение, дозирование. Гидравлические процессы являются также основой для проведения ряда других процессов и их интенсификации (теплообменных, массообменных и др.). Движущей силой гидравлических проце-сов является разность давлений. Скорость протекания процесса определяется законами гидродинамики. [c.13]

    III. Массообменные процессы связаны с переходом вещества из одной фазы в другую в результате диффузии. Поэтому их называют также диффузионными. К этому классу относятся перегонка, ректификация, абсорбция и десорбция, адсорбция, экстракция, сушка, кристаллизация и др. Движущей силой массообменных процессов является разность концентраций. Скорость процесса определяется законами массопередачи. [c.13]

    Третья группа — массообменные (диффузионные) процессы. Скорость этих процессов определяется скоростью перехода веществ из одной фазы в другую, т. е. законами массопередачи. К диффузионным процессам относятся абсорбция, экстракция, ректификация, адсорбция, сушка и др. [c.10]

    Изучение законов движения реальных газов и жидкостей дает возможность познать не только этн законы, но попутно усвоить и метод изучения таких сложных технологических процессов, как теплообмен и массообмен. [c.12]

    Кинетические закономерности процесса экстракции определяются основными законами массопередачи. Поскольку при экстракции происходит массообмен между двумя жидкими фазами, распределяемое вещество переходит из одной жидкости в другую. Для развития поверхности фазового контакта обычно одну из жидкостей диспергируют до капель определенной величины. Таким образом распределяемое вещество переходит из сплошной фазы к поверх. [c.360]

    Законы гидродинамики, составляющие основу гидромеханических процессов, Б значительной мере определяют также характер течения тепловых и массообменных (диффузионных) процессов. [c.121]

    Движущей силой массообменных процессов является разность концентраций или градиент концентраций между фактической концентрацией компонента в данной фазе и равновесной с другой фазой, а скорость процесса определяется законами массопередачи. [c.7]


    Водяной пар вместе с парами испарившихся углеводородов на тарелке, расположенной выше, вступает в массообмен с жидкостью. В соответствии с законом Дальтона масса паров углеводородов, получаемых при вводе водяного пара, определяется уравнением (11.32)  [c.158]

    В первой и третьей зонах реактора протекают физические процессы подвода и отвода веществ, подчиняющиеся общим законам массопередачи. Закономерности массопередачи определяются законами фазового равновесия, движущей силой процесса и коэффициентами скорости массообменных процессов. Массопередача осуществляется путем молекулярной диффузии, конвекции, испарения, абсорбции и десорбции. [c.95]

    РАСЧЕТ ТАРЕЛЬЧАТЫХ МАССООБМЕННЫХ АППАРАТОВ С ИСПОЛЬЗОВАНИЕМ ЗАКОНОВ МАССОПЕРЕДАЧИ [c.310]

    В наиболее законченном виде метод расчета тарельчатых массообменных аппаратов (ректификационных и абсорбционных), базирующийся на использовании законов массопередачи, дается А. Г. Касаткиным, А. Н. Плановским и О. С. Чеховым [142]. Особенностью этого расчета является графическое определение числа реальных тарелок по числу единиц переноса. Принцип расчета поясним, используя наиболее простой случай, когда коэффициент массопередачи на всех тарелках аппарата одинаков, а уноса жидкости с нижележащих тарелок на вышележащую не происходит. [c.310]

    Массообменные (диффузионные) процессы, характеризующиеся переносом одного или нескольких компонентов исходной смеси из одной фазы в другую через поверхность раздела фаз. Наиболее медленной и по-атому обычно лимитирующей стадией массообменных процессов является молекулярная диффузия распределяемого вещества. К этой группе процессов, описываемых законами массопередачи, относятся абсорбция, перегонка (ректификация), экстракция из растворов, растворение [и экстракция из пористых твердых тел, кристаллизация, адсорбция и сушка. [c.13]

    Все перечисленные звенья взаимосвязаны. Параметры, характеризующие их состояние, имеют пространственную распределенность. Поэтому в общем случае математические модели лроцессов могут быть получены из нестационарных уравнений сохранения массы, энергии, количества движения и диффузии с начальными и граничными условиями, учитывающими взаимодействие звеньев и пограничных слоев их элементов [35]. Используя известные уравнения законов сохранения, запишем общую систему уравнений, характеризующих состояние движущейся в трехмерном пространстве среды, в которой идут массообменные и теплообменные процессы  [c.29]

    Формула (5.36) позволяет рассчитать интенсивность массообмена реагирующей частицы произвольной формы с поступательным потоком, когда на поверхности частицы протекает химическая реакция первого порядка, если известна сила сопротивления частицы / и среднее число Шервуда Sho, соответствующее массообмену покоящейся частицы с неподвижной средой. В случае теплообмена формула (5.36) определяет число Нуссельта для частицы произвольной формы при фиксированной температуре поверхности частицы и линейном законе теплообмена частицы с окружающей средой. Формула (5.36) обобщает результаты работы [119], где рассматривался диффузионный режим реакции на поверхности сферы (что соответствует предельному переходу при /с -v оо в задаче (5.1)). [c.259]

    Определение по температурному коэффициенту суммарной скорости процесса. Если с изменением температуры на 10° С суммарная скорость процесса изменяется в 2—3 раза (как следует из закона Аррениуса), лимитирующей стадией является собственно химическое превращение. Если же с изменением температуры на 10° С суммарная скорость процесса изменяется менее чем в 2 раза, лимитирующей стадией служит массообмен. В промежуточных случаях реакция протекает в диффузионно-кинетической области. [c.392]

    Классификация. Хим.-технол. процесс в целом - это сложная система, состоящая из единичных, связанных между собой элементов и взаимодействующая с окружающей средой. Элементами этой системы являются 5 групп процессов 1) механические - измельчение, грохочение, таблетирование, транспортирование твердых материалов, упаковка конечного продукта и др. 2) гидромеханические - перемещение жидкостей и газов по трубопроводам и аппаратам, пневматич. транспорт, гидравлич. классификация, туманоулавливание, фильтрование, флотация, центрифугирование, осаждение, перемешивание, псевдоожижение идр. скорость этих процессов определяется законами механики и гидродинамики 3) тепловые - испарение, конденсация, нафевание, охлаждение, выпаривание (см. также Теплообмен), скорость к-рых определяется законами теплопередачи 4) диффузионные или массообменные, связанные с переносом в-ва в разл. агрегатных состояниях из одной фазы в другую,- абсорбция газов, увлажнение газов и паров, адсорбция, дистилляция, ректификация, сушка, кристаллизация (см. также Кристаллизационные методы разделения смесей), сублимация, экстрагирование, жидкостная экстракция, ионный обмен, обратный осмос (см. также Мембранные процессы разделения), электродиализ и др. 5) химические. Все эти процессы рассматриваются как единичные или основные. [c.238]


    В реальных массообменных аппаратах процесс проводят при высокой турбулизации фаз с целью обеспечения высокой скорости массопередачи. В общем случае перенос вещества в каждой из фаз осуществляется благодаря молекулярной и турбулентной диффузии, причем скорость диффузии подчиняется закону Фика [c.54]

    В данной главе рассмотрены различные модели процессов переноса в двухфазных многокомпонентных средах для расчета и выбора вариантов модернизации колонн с массообменными тарелками и насадочными элементами, построенные с использованием законов сохранения в локальной и интегральной формах. [c.125]

    Массообменные процессы основаны на избирательном обмене отдельными компонентами между фазами многокомпонентных систем через поверхности контакта фаз. Переход распределяемого компонента через поверхность контакта в другую фазу определяется законами молекулярного, конвективного и турбулентного переноса. К массообменным процессам относятся экстракция, кристаллизация, абсорбция, адсорбция и др. [c.719]

    Качественное рассмотрение, проведенное Дильманом [55, 67], приводит к выводу, что в системах жидкость — жидкость п = 23. Ддя установления этого закона необходимы надежные экспериментальные данные о зависимости коэффициента массопередачн от числа Шмидта. Из имеющихся в литературе данных по массообмену в системах жидкость — пар [68], жидкость — жидкость [69] и жидкость — газ [70, 71] следует, что в указанных системах й 2. [c.183]

    Если определяющими процесс условиями являются теплопередача или диффузионный массообмен, требуется рассмотрение динамического подобия, так как коэ( )фициенты обоих процессов зависят от числа Рейнольдса. Изучение одного только химического подобия будет достаточным, если скорость процесса определяется скоростью химической реакции. В таком случае достаточно равенство критерия Дамкелера гЫСи. В этом комплексе выражение Ыи—время пребывания смеси в зоне реакции. Таким образом, химическое подобие достигается при условии, что скорость реакции, время пребывания и начальные концентрации одинаковы в модели и в прототипе. Используя закон действия масс для реакции л-го порядка [c.347]

    Расчет по уравнениям (П.20), (П.21) невозможен без учета связей между концентрациями, вытекаюшрх из законов массопередачи. Массообмен происходит при движении через жидкость пузырька пара. Количество переданного на всей тарелке вещества за время х [c.86]

    Многообразие вариантов расчета фазового равновесия обусловлено значительным различием свойств разделяемой смеси. Это различие находит отражение в алгоритмах расчета фазового равновесия. Применительно к массообменным процессам в настоящее время накоплен достаточный опыт по расчету равновесия в идеальных и неидеальных системах, однако применение точных моделей часто обусловлено отсутствием экспериментальных данных для оценки параметров корреляционных зависимостей тина уравнений Вильсона и НРТЛ для учета неидеальности жидкой фазы или вириального уравнения для оценки неидеальности паровой фазы. Отсутствие данных приводит к тому, что при расчетах принимаются упрощающие допущения, оценка которых даже не всегда возможна. К распространенным допущениям относительно расчета фазового равновесия относятся паровая (газовая) фаза подчиняется законам идеальных газов, что позволяет отказаться от учета неидеальности и обычно принимается для систем в диапазоне умеренных давлений жидкая фаза подчиняется законам идеальных растворов, что позволяет отказаться от учета неидеальности и определять константы равновесия через давление паров чистых компонентов (это допущение обычно принимается при определении равновесия систем, состоящих из компонентов с близкими свойствами, например членов [c.315]

    Основными вопросами, изучаемыми в массопередаче, являются законы фазового равновесия, позволяющие установить равновесные концентрации и направление течения процесса движущая сила массообменных процессов коэффициенты скорости массообменных процессои. [c.251]

    Водяной нар, который вводят в пиз колонны вместе с парами, образующимися прп испарепии кидкости, поднимается вверх, вступая па вышерасположенной таролке в контакт с жидкостью в ре-зу.пьтате происходит массообмен между парами и жидкостью. В соответствии с законом Дальтона количество углеводородных наров, получаемых нри данных условиях за счет ввода водяного нара, определяется следующим уравпением  [c.155]

    Теплопередача — наука о процессах распространения тепла. Законы теплопередачи лежат в основе тепловых процессов — нагревания, охлаждения, конденсацпи паров, выпаривания — и имеют большое значение для проведения многих массообменных (процессы перегонки, сушки и др.), а также химических процессов, протекающих с подводом или отводом тепла. [c.260]

    В этой связи авторами была поставлена задача систематизации и уточнения большого отечественного и зарубежного материала по расчетам массообменной, теплоо(бменной п разделительной аппаратуры. Осо бое внимание было уделено законам состояния углеводородных смесей при повышенных давлениях, методам расчета фазового равновесия систем пар (газ) — жидкость, а также теплотехническим расчетам, являющимся основой большинства технологических процессов. [c.7]

    Массообменные 1диффу11юииые) процессы связа 1ы с переносом вещества из одной фазы в другую в результате диффузии. Движущая сила - разность концентраций. Скорость определяется законами массопсредачи. Для реализации массообменных процессов предназначены следующие аппараты и машины  [c.7]

    Д. служит основой мн. распространенных техн. операций спекания порошков, химико-термич. обработки металлов (напр, азотирования и цементации сталей), гомогенизации сплавов, металлизации и сварки материалов, дубления кожи и меха, крашения волокон перемещения газов с помощью т. наз. диффузионных насосов. Д -одна из стадий многочисл. химико-технол. процессов (напр., массообменных) представления о диффузионном переносе в-ва используют при моделировании структуры потоков в хим. реакторах и др. Роль Д. существенно возросла в связи с необходимостью создания материалов с заранее заданными св-вами для развивающихся областей техники (ядерной энергетики, космонавтики, радиационных и плазмохим. процессов и т. п.). Знание законов, управляющих Д, позволяет предупреждать нежелательные изменения в изделиях, происходящие под влиянием высоких нагрузок и т-р, облучения и т.д. Закономерностям Д. подчиняются процессы физ.-хим. эмиграции элементов в земных недрах и во Вселенной, а также процессы жизнедеятельности клеток и тканей растений (напр., поглощение корневыми клетками N, Р, К-осн. элементов мннер. питания) и живых организмов. [c.105]

    Первый раздел- Теоретические основы процессов химической технологии -является фундаментом, теоретической базой курса он связывает последующие разделы в единое целое. Все рассмотренные в разделе вопросы - законы сохранения, равновесия и переноса импульса, энергии (теплоты) и массы, моделирование процессов химической технологии и гидродинамическая структура потоков в химических аппаратах - являются теоретической основой типовых процессов-гидромеханических, тепловых и массообменных. В дальнейшем представляется целесообразным расширение и углуб- [c.7]


Смотреть страницы где упоминается термин Массообмен законы: [c.106]    [c.70]    [c.14]    [c.268]    [c.13]    [c.104]    [c.314]    [c.7]    [c.33]    [c.218]    [c.162]    [c.647]    [c.6]   
Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности Издание 2 (1982) -- [ c.31 , c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Массообмен



© 2025 chem21.info Реклама на сайте