Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты летучести компонентов смесе

    Коэффициент летучести компонента в газовой смеси определяется уравнением [c.109]

    Коэффициент активности у является функцией физико-химических свойств всех остальных компонентов смеси и их концентраций. Для некоторых смесей в присутствии разделяющего агента подлежащие ректификации компоненты из-за их различной растворимости по-разному отклоняются от законов идеальных растворов, поэтому их коэффициенты активности различны. Установлено также, что коэффициент активности каждого компонента увеличивается но мере увеличения концентрации от О до 100%, однако для различных компонентов смеси в разной степени. Таким образом, для реальных смесей относительная летучесть равна отношению давлений насыщенных паров и коэффициентов активности  [c.208]


    Техника расчета коэффициентов летучести компонентов смесей с помощью кубических уравнений состояния излагается в руководстве [6]. [c.136]

    Коэффициент летучести компонента i в газовой смеси fi определялся по уравнению [c.15]

    В связи с отмеченным влиянием агрегатного состояния исходной смеси на удельный расход разделяющего агента в процессе экстрактивной ректификации интересно выяснить целесообразность предварительного испарения (или конденсации) исходной смеси перед подачей ее в колонну. Из уравнений теплового баланса процесса экстрактивной ректификации с учетом расхода тепла в отгонной колонне следует, что при парообразном состоянии исходной смеси конденсация ее перед подачей в колонну во всех случаях энергетически невыгодна. Наоборот, при. обычно применяемых на практике высоких концентрациях разделяющего агента предварительное испарение исходной смеси может привести к экономии общего расхода тепла в процессе разделения. Эта экономия тем больше, чем выше коэффициент относительной летучести компонентов смеси, подвергаемой разделению.  [c.263]

    В ГЖХ используют различия в летучести компонентов смеси, в геометрической структуре их молекул и интенсивности взаимодействия с неподвижной фазой. Селективные неподвижные фазы обеспечивают различную растворяющую способность по отношению к анализируемым веществам и взаимное смещение зон компонентов смеси. Различают селективность как способность к разделению каких-либо двух компонентов, групповую селективность как способность к разделению компонентов двух гомологических рядов, например алканов и аренов, а также селективность по молекулярным массам — способность к разделению компонентов одного гомологического ряда. Как и в процессах экстракции, экстрактивной и азеотропной ректификации," абсорбции, селективность растворителей в ГЖХ можно характеризовать отношением коэффициентов активности разделяемых компонентов й растворителе. Значения коэффициентов активности связаны с параметрами удерживания компонентов в хроматографической колонке. [c.121]

    Уравнение (121) определяет условие, которому должен удовлетворять разделяющий агент для того, чтобы он увеличивал коэффициент относительной летучести заданной смеси. Это уравнение не позволяет, однако, установить, распространяется ли это увеличение на весь диапазон концентраций. компонентов заданной смеси. Кроме того, оно не отражает влияния свойств и состава смеси, подвергаемой разделению, на степень Изменения ее коэффициента относительной летучести. Для решения этих вопросов следует выяснить механизм действия разделяющих агентов. С этой целью необходимо обратиться к анализу имеющихся опытных данных о равновесии между жидкостью и паром в трехкомпонентных системах. [c.39]


    Вычисление летучестей компонентов смеси чаще всего затруднено из-за отсутствия уравнения состояния смесей. Поэтому для учета неидеальности паровой фазы обычно используют уравнение состояния со вторым вириальным коэффициентом  [c.12]

    Уравнения для расчета летучести компонента смеси получены в [2814—2816] (см. также [2817]). Исследование [2818] содержит расчет летучестей и коэффициентов активности компонентов при наличии химического взаимодействия, а 28191 и [28201 посвящены летучестям и парциальным мольным объемам конкретных систем. [c.37]

    Как было отмечено ранее, давление системы влияет также на коэффициенты относительной летучести компонентов смеси. Для большинства смесей эта характеристика с понижением давления увеличивается. Правда, в некоторых случаях может наблюдаться и обратная зависимость. Увеличение коэффициента относительной летучести благоприятно сказывается на процессе ректификации, позволяя снизить количество орошения, уменьшить число тарелок в колонне или повысить четкость разделения компонентов. [c.156]

    Коэффициент летучести компонента / в смеси можно вычислить по следующему уравнению  [c.376]

    Если в смесь углеводородов ввести третье вещество, которое увеличит относительную летучесть компонентов, то число теоретических тарелок, необходимое для разделения этих углеводородов, резко снизится. Если добавляемый третий компонент менее летуч, чем исходные углеводороды, то его вводят сверху колонны и выводят снизу вместе с остатком. Такая ректификация называется экстрактивной. При этом вводимое вещество называют растворителем, ввод его в систему приводит к повышению коэффициентов относительной летучести из-за различной растворимости в нем компонентов смеси. [c.207]

    Таким образом, основной проблемой расчета Км а х для реальной газовой смеси является определение коэффициентов уг и по ним величины Ку. Заметим, что коэффициент у,- для компонента смеси, находящейся при давлении р и температуре вообще говоря, не равен коэффициенту у° индивидуального газа при тех же р и Т, так же, как и не равны летучести компонента в смеси /г и чистого газа /Л Если, однако, парциальный мольный объем компонента при Т, р смеси равен мольному объему того же индивидуального газа при тех же Г и р, то для летучести будет выполняться условие (1.55) и тогда у°=у,. При таком приближении (а расчеты проводят при его использовании) определение Км к х оказывается достаточно простым и включает следующие этапы  [c.78]

    Программа выполняется следующим образом. Сначала вводятся необходимые исходные данные (коэффициенты зависимости Т = = / ( 1-), коэффициенты относительной летучести компонентов и состав жидкости). Затем вычисляется знаменатель выражения (3— 27), определяются и температура кипения смеси Т. Расчет состава паровой фазы по уравнениям (3—26) производится во втором операторе цикла. [c.98]

    Выше уже указывалось, что коэффициент относительной летучести бинарной системы зависит от степени ее неидеальности, характеризуемой в уравнениях (124) и (125) величиной Л12, а также от отношения давлений паров компонентов и состава раствора. Обраш,ает на себя внимание, что члены А 2(1—2х1) и Л 2(1—2<) входят соответственно в уравнения (124) и (125) с разными знаками. Это показывает, что разделяющий агент в наибольшей степени увеличивает коэффициент относительной летучести заданной смеси в том диапазоне концентраций, в котором в отсутствие разделяющего агента он имеет наименьшее значение. В области концентрации, соответствующей наибольшим значениям коэффициента относительной летучести в отсутствие разделяющего агента, прибавление последнего увеличивает а в минимальной степени. Эти положения наглядно иллюстрируются кривыми, изображенными на рис. 7. [c.42]

    I. Наиболее желательными разделяющими агентами являются такие, которые удовлетворяют условию (126), так как они позволяют увеличить коэффициент относительной летучести компонентов заданной смеси во всем диапазоне концентраций. [c.43]

    I Другое существенное упрощение возникает в связи с поддержанием в процессе экстрактивной ректификации высокой концентрации разделяющего агента, В гл. II (стр. 39 и сл.) было показано, что изменение коэффициентов относительной летучести компонентов заданной смеси в зависимости от относительного их содержания определяется двумя факторами степенью неидеальности заданной смеси и концентрацией разделяющего агента. С увеличением последней коэффициент относительной летучести независимо от свойств исходной смеси все меньше изменяется с изменением относительной концентрации разделяющих веществ. Благодаря этому при больших концентрациях разделяющего агента в расчет могут приниматься средние значения коэффициентов относительной летучести, зависящие от концентрации разделяющего агента в жидкости и не зависящие от соотношения количеств исходных веществ в смеси погрешность при этом тем меньше, чем меньше степень неидеальности заданной смеси. При разделении, например, таких близких к идеальным смесей, как смеси углеводородов, это положение оправдывается с высокой степенью точности. При изложенных допущениях процесс экстрактивной ректификации может рассчитываться как обычная ректификация идеальных смесей. В этом отношении не имеет значения и изменение коэффициентов относительной летучести при переходе от укрепляющей части колонны к исчерпывающей при питании колонны исходной жидкой смесью, так как каждая из этих частей колонны рассчитывается отдельно. Скачкообразным повышением концентрации разделяющего агента в кубе обычно пренебрегают, принимая ее такой же, как для исчерпывающей части колонны. При расчете это идет в запас, роль которого тем меньше, чем больше число тарелок в колонне. [c.246]


    Из уравнений (3.27) и (3.28) следует, что при массопередаче в многокомпонентных смесях взаимное влияние компонентов обусловлено кинетическими и термодинамическими эффектами, отраженными соответственно матрицами [бо], [б ] и- [Щ. Из приведенных уравнений можно заключить также, что кинетическое взаимодействие компонентов увеличивается при большем различии в величинах бинарных коэффициентов диффузии и исчезает при одинаковых их значениях, в то время как термодинамические эффекты взагтмодействия, обусловленные различной летучестью компонентов смеси, проявляются при разделении любых многокомпонентных смесей независимо от их природы и от физических свойств компонентов смеси. Эффекты взаимодействия существенно зависят также от состава смеси и, кроме того, от величины движущих сил всех компонентов. Естественно, что при заметном содержании в смеси. всех компонентов эффекты взаимодействия должны проявляться в наибольшей степени. [c.74]

    В связи с тем, что уравнение Б-В-Р успешно используется для определения коэффициента летучести компонентов в смесях сложного с остава целесообразно было рассмотреть возможность обобщения на основе фактора корреляции констант фазового рановесия. [c.69]

    В расчетах фазового равновесия для определения коэффициентов относительно летучести компонентов смеси используют различные уравнения состояния. Наибольшее распространение получило двухпараметрическое кубическое уравнение Пенга - Робинсона [2]  [c.28]

    Отношение / уц1х1р тоже называется коэффициентом летучести компонента / в жидкой фазе. Подставляя уравнение состояния Редлиха-Квонга (IX.51) в (IX.155), получим расчетное уравнение для определения коэффициента летучести компонентов в газовой смеси [c.278]

    В экстремальной точке бинарного гомоазеотропа концентрации паровой и жидкой фаз одинаковы и, следовательно, здесь коэффициент относительной летучести компонентов системы равен единице. Разделительный агент изменяет относительную летучесть компонентов исходной смеси и поэтому по крайней мере с одним из них должен образовать неидеальпый раствор. То же относится и к случаю разделения близкокипящих компонентов, относительная летучесть которых близка к единице. [c.329]

    Требуемое число теоретических тарелок зависит от ряда параметров, главным образом от разности температур кипения разделяемых 1 омнонентов смеси (величины коэффициента относительной летучести) четкости погоноразделения, т. е. от состава получаемых ректификата и остатка флегмового числа, т. е. от кратности орошения к ректификату. Чем меньше разность температур кипения разделяемых компонентов смеси, тем более полога кривая равновесия и тем больше требуется тарелок. [c.234]

    Критерием оценки возможного применения ректификации для разделения углеводородных смесей на составляющие их компоненты, как известно, является коэффициент относительной летучести. Чем больше этот коэффициент, тем легче разделяются компоненты смеси. В табл. 39 приведены результаты расчета числа теоретических тарелок, требуемых для разделения смесей с различным значением коэффициента летучести и получения ректификатов различного состава. Анализируя данные этой таблицы, можно заключить, что для повышения чистоты ректификата, например, с 0,90 до 0,99 требуется примерно в 2 раза увеличить число тарелок. Видно также, что для разделения смесей с низкой летучестью необходимо исключительно большое число тарелок. Так, для разделения смеси с коэффициентом относительной летучести 1,05 при чистоте ректификата 0,99 требуется 189 тарелок. При коэффициенте относительной летучесш 1,2 и той же чистоте ректификата требуется только 50 тарелок и т. д. [c.323]

    Выбор разделяющего агента. Разделяюпщй агент выбирается в соответствии с требованиями общего характера (легкость регенерации, дешевизна и др.) и основан на термодинамических соотношениях, выражающих среднее увеличение коэффициента относительной летучести компонента за счет присутствия разделяющего агента [23, 24]. Известные методы выбора можно разделить на две группы методы, основанные на использовании данных о свойствах растворов, образуемых компонентами заданной смеси и разделяющим агентом методы, основанные на данных по свойствам компонентов. [c.286]

    ПаролбидкоСтНое рйвНовёСие. В зависимости От исхоДнМх Данных о физико-химических свойствах компонентов, а также данных по парон идкостному равновесию бинарных и многокомпонентных смесей возможно несколько вариантов расчета равновесия 1) при допущении постоянства коэффициентов относительной летучести компонентов 2) с учетом температурной зависимости констант фазового равновесия при допущении идеальности паровой и жидкой фаз 3) с учетом неидеальной жидкой фазы по уравнениям Маргулеса, Ван Лаара, Редлиха — Кистера, Вильсона  [c.119]

    Если коэффициенты относительной летучести компонентов не зависят от температуры, то расчет равновесия удобно выполнять с использованием константы фазового равновесия ведущего компонента, т. е. компонента, по отношению к которому определяются эти коэффициенты. В этсм случае температуру кипения смеси, отвечающую заданному составу жидкой фазы, определяют по заранее установленной эмпирической зависимости как функцию константы равновесия ведущего компонента Т — f (К). [c.97]

    Во многих случаях метод экстрактивной ректификации применяется для разделения многокомпонентных смесей. Таковы, например, обычно смеси углеводородов. По изложенным выше причинам коэффициенты относительной летучести компонентов таких смесей в процессе экстрактивной ректификации могут быть приняты постоянными. Поэтому расчет может производиться с помощью методов, применяемых для расчета процессов обычной ректификации идеальных многокбмпонентных смесей. Из числа этих методов широкое распространение получил приближенный метод Джиллиланда [247], благодаря его относительной простоте. Аналитический метод расчета процессов ректификации многокомпонентных идеальных смесей был предложен Ундервудом [249—252]. [c.248]


Смотреть страницы где упоминается термин Коэффициенты летучести компонентов смесе: [c.12]    [c.47]    [c.165]    [c.24]    [c.9]    [c.462]    [c.247]    [c.139]    [c.551]    [c.14]    [c.12]    [c.307]    [c.139]    [c.43]    [c.45]    [c.48]    [c.6]    [c.41]   
Многокомпонентная ректификация (1969) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент компонента

Коэффициент летучести

Летучесть



© 2024 chem21.info Реклама на сайте