Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упаковка молекул

    Поглощенную ионитом воду подразделяют на гидратную и свободную. Гидратная — вода, необходимая для образования первичных гидратных слоев, упаковка молекул воды в которых плотнее, чем в свободном состоянии. Вода, поглощенная сверх количества, нужного для образования первичных гидратных слоев, носит [c.374]

    Степень адсорбционной насыщенности латексов характеризует среднюю плотность упаковки молекул ПАВ в адсорбционных слоях. От нее во многом зависит устойчивость латексов к коагуляции, поведение их при храпении и в процессах переработки в изделия. Степень адсорбционной насыщенности поверхности частиц латекса определяется как [c.143]


    При определенной концентрации эмульгатора, соответствующей достижению плотной упаковки молекул ПАВ в адсорбционном слое и минимальному поверхностному натяжению на границе раздела фаз, в объеме начинается и заканчивается формирование мицелл, представляющих собой частицы коллоидной (мицелляр-ной) фазы [21, 22]. Такая концентрация называется критической концентрацией мицеллообразования (ККМ). [c.144]

    В твердом состоянии молекулы углеводородов расположены упорядоченно, образуя кристаллы различной структуры. В зависимости от числа атомов углерода в молекуле и температуры кристаллизации индивидуальные н-парафины, относящиеся к полиморфным соединениям, могут кристаллизоваться в четырех формах гексагональной (а-форма), орторомбической (р-форма), моноклинной (у-форма) и триклинной (б-форма), причем последние две формы имеют угол наклона осей молекул к плоскости, в которой расположены концевые группы, соответственно 73° и 61°30. В кристаллах гексагональной структуры молекулы н-парафинов расположены так, что длинные оси их перпендикулярны плоскости, в которой расположены концевые группы молекул. При такой упаковке молекулы имеют свободу вращения вокруг своих длинных осей. Орторомбическая структура характеризуется таким же расположением молекул, однако отсутствие гексагональной симметрии обусловливает только колебательные движения молекул около своего среднего положения. Такая же форма движения имеет место и в случаях моно- и триклинной структуры кристаллов. Схематическое расположение молекул парафинов нормального строения в кристаллах разной модификации показано на рис. 28, а размеры элементарных ячеек приведены в работе [4], где указано на возможность образования кристаллов с 13 различными параметрами. Полиморфизм присущ всем нечетным н-па-рафинам, начиная с Сэ, и четным от С22 до С36. [c.120]

    Структура воды. Как уже указывалось, молекулы Н2О в кристаллической решетке льда связаны друг с другом водородными связями. Кристаллическая структура льда весьма далека от плотнейшей упаковки. При плотнейшей упаковке молекул Н2О лед имел бы плотность 2,0 г/см , тогда как в действительности плотность льда равна 0,9 г/см  [c.156]

    Результаты этих опытов убедительно свидетельствовали о том, что оптическая активность связана с асимметрией. Однако асимметрия наблюдалась у кристаллов, а многие вещества проявляли оптическую активность как в кристаллическом состоянии, так н в растворах. При растворении веществ происходит разрушение упорядоченной упаковки молекул в кристаллах, и в растворе вещества находятся в виде отдельных беспорядочно перемещающихся молекул. Если оптическая активность обусловлена асимметрией, то асимметрична должна быть и сама структура молекул. [c.87]


    Лед может существовать в нескольких кристаллических модификациях. Описанная здесь форма носит название лед I. При невысоких давлениях она является наиболее устойчивой. Но при высоких давлениях, начиная с 2000 атм, более устойчивыми могут быть другие кристаллические формы льда. В настоящее время известно несколько таких форм. На рис, 83 схематически представлена диаграмма состояния воды в области давлений до 13 000 атм. По крайней мере в двух формах (лед П-и лед III), как показывают результаты рентгеноструктурного анализа их, каждая из молекул воды тоже связана с четырьмя другими. Плотности всех форм льда от II до VII выше, чем льда I (и выше, чем жидкой воды), так как за счет действия повышенного давления (т. е. с затратой энергии извне) в них осуществляется искажение валентных углов и достигается более плотная упаковка молекул. Интересно отметить, что одна из форм льда (лед VII) почти в полтора раза тяжелее, чем лед I. Лед VII образуется при давлении около 21 700 атм и более высоких. При 21 680 атм он находится в, равновесии с жидкой водой при температуре -1-81,6° С (теплота плавления его в этих условиях равна 526 ккал/моль), а при давлении 32 ООО атм лед плавится лишь при +192° С. [c.250]

    Для химич( Ской кинетики достаточно точно можно оценить величину сечен)1я соударений, считая, что в жидкости или в твердом теле происходит плотная упаковка молекул. Объем, занимаемый 1 моль (молярный объем), равен M/d, где d — плотность вещества, г м . При плотной упаковке шарик радиусом т занимает объем 8г /]/2. Следовательно, [c.369]

    Твердые алканы кристалличны. На температуру плавления в значительной степени влияют геометрические факторы упаковки молекул в кристаллической решетке, eм симметричнее построена молекула, тем легче и прочнее ее упаковка в кристалл и тем выше температура плавления. [c.113]

    С повышением давления (степень упаковки молекул в жидкостях увеличивается), молекулярной массы и полярности молекул поверхностное натяжение возрастает. Изменение поверхностного натяжения в нефтяной системе с повышением давления объясняется попаданием большего количества низкомолекулярных соединений обратно в жидкость. [c.126]

    С достаточной для целей химической кинетики точностью можно оценить величину од,в, считая, что в жидкости или в твердом теле имеет место плотная упаковка молекул. Объем, занимаемый одним молем (молярный объем), равен М/р, где р — плотность вещества, г/см . В то же время, как известно из геометрии, на один шарик радиуса г (в нашем случае на одну молекулу) при плотной упаковке приходится объем 2. Следовательно, [c.78]

    Различные экспериментальные наблюдения позволяют сделать вывод о том, что длительные периоды начала роста простой трещины и трещины серебра при низких значениях напряжения не просто вызваны уменьшением вероятности образования зародыша трещины в остальном не измененного материала. Природа изменений, происходящих на молекулярном уровне в процессе утомления образца, исследовалась разными авторами (например, [138, 143—147, 153]). Так, по затуханию колебаний торсионного маятника [138, 134—144] и методом ИК-поглощения [138] были исследованы молекулярная подвижность, взаимодействие молекул и их роль в поглощении энергии путем измерений плотности и методом рассеяния рентгеновских лучей [144—146], а также путем применения образцов с различной молекулярной массой [153] были исследованы упаковка молекул и дефектность структуры, а с помощью кинетики рекомбинации захваченных свободных радикалов [146] было исследовано изменение морфологии материала. Результаты, полученные с помощью этих различных экспериментальных методов, характеризуют упорядочение молекул, но еще не позволяют получить количественные значения пределов усталости. [c.295]

    Авторы работы [210] изучали адсорбцию цеолитом СаА н-гептана. Рассматривая некоторые возможные варианты расположения молекул н-гептана в полости цеолита, авторы указывают, что возможны положения, когда на одну полость цеолита приходится 2-3 недеформированные молекулы н-гептана. Но термодинамически возможно образование поворотных изомеров н-гептана. Скручивание линейных молекул н-гептана способствует более плотной упаковке молекул в полости тогда в последней могут расположиться 3-4 молекулы адсорбтива. Однако даже в этом случае неизбежно остаются еще значительные пустоты между молекулами, находящимися в полостях цеолита в поле адсорбционных и межмолекулярных сил. [c.285]

    В работе [211] изучение сорбции н-парафинов С - С, из растворов в декалине при 20°С на формованном цеолите СаА позволило предположить возможные схемы расположения молекул декана, тридекана, гексадекана в полостях цеолита СаА. Определив количество молекул н-парафина, приходящихся на одну полость кристал а цеолита при предельном заполнении, авторы показали, что в исследованном ряду н-парафинов наибольшая степень заполнения полостей соответствует н-додекану и н-тридекану (в полости находится 1,3-1,4 молекулы углеводородов) и предположили, что молекулы додекана и тридекана в полости цеолита под влиянием очень сильного адсорбционного поля принимают наиболее плотную упаковку в виде незамкнутого кольца. Предельные сорбционные объемы и степень заполнения полостей для тетрадекана, пентадекана и гексадекана меньше, чем у вышеуказанных углеводородов, и это объясняется более рыхлой упаковкой молекул в полостях цеолита. При адсорбции молекул н-нонана и н-додекана в полостях цеолита остается много промежутков, и поэтому значение предельных сорбционных объемов и степеней заполнения для этих углеводородов также сравнительно меньше. [c.285]


    В процессе старения битумов визуально наблюдали его усадку, которая со временем увеличивалась. Рост усадки происходат не только в результате процессов уплотнения, приводящих к более плотной упаковке молекул битума, но и в процессе образования пор, которые сужаются при испарении влаги под действием капилляршх сил или расширяются при замерзании влаги, имеющейся в порах, приводя к дополнительному сжатию массы. [c.64]

    Величины коэффициентов упаковки молекул нормальных парафинов при высокотемпературной адсорбции на цеолитах типа А [c.296]

    Средние величины коэффициентов упаковки молекул нормальных парафинов при различных температурах [c.297]

    На основании средних значений предельного адсорбционного объема для всех образцов цеолитов были найдены усредненные коэффициенты упаковки молекул нормальных алканов Сд - С, 5. в полостях молекулярных сит типа А, значения которых приведены в табл. 9.20. [c.297]

    Химические реакции в поверхностных пленках. Надо полагать, что сам факт нахождения молекул в монослое на поверхности жидкости не изменяет ее химическою активность. Тем не менее экспериментальные данные показывают, что возможность химического взаимодействия молекул пленки с молекулами или ионами подкладки в значительной мере зависит от ориентации и плотности упаковки молекул пленки. Вследствие этого скорость реакции вещества пленки существенно зависит от ее структуры. Течение химических реакций в поверхностных пленках можно проследить, измеряя поверхностное давление или скачок потенциала. Первый из этих способов позволяет обнаружить всякое изменение, сопровождаемое заметной переориентацией молекул, второй—всякую реориентацию диполей или изменение полного дипольного момента молекулы. [c.58]

    Поверхностная энергия твердого тела, в особенности кристаллов, зависит от расположения частиц под любой из граней, от способа упаковки молекул. Поэтому даже для одного кристалла или зерна условия смачиваемости по различным поверз ностям неоднозначны. Следовательно, даже для идеального однородного  [c.207]

    Имеются данные, подтверждающие влияние небольших следов ионов и других примесей в подкладке на свойства и химические реакции пленок. Например, плотность упаковки молекул кислот в конденсированных пленках зависит от природы и валентности ионов, растворенных в подкладке. [c.58]

    При плавлении льда разрушается лишь часть гюдороднык связей. Поэтому при температурах, близких к О °С, и(ндкая вода содержит как остатки структуры льда, так й оторвавшиеся от них отдельные молекулы, Последние могут размещаться в пустотах ледяных агрегатов, в результате чего достигается более плотная упаковка молекул. Именно поэтому при плаплении объем воды уменьшается, а ее плотность возрастает. [c.208]

    С достаточной точностью можно оценить величину сечения соударения F жидкости или в твердрм теле, если существует плотная упаковка. молекул. Объем, занимаемый одним молем (молярный объем), равен /-i/d. На один шарик радиусом г при плотной упаковке приходится (бьем 8г /]/2, следовательно, [c.372]

    Гибкие макромолекулы линейных полимеров с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала. Шогие такие полимеры растворяются в растворителях, Иа физико-механические и химические свойства линейного полимера влияет плотность упаковки молекул в единице объема. При плотной упаковке возникает более сильное мемыолекулярное притяжение, что приводит к повышении плотности, прочности, температуры размягчения и уменьшению растворимости. Линейные полимеры являются наиболее подходящими для- получения волокон и пленок (например, полиэтилен, полиамлды и др.). [c.21]

    Ароматические углеводороды имеют более высокие температуры кипения, чем соответствующие циклопарафиновые углеводороды, Это объясняется более плотной упаковкой молекул ароматических углеводородов (плоское кольцо), а также более сильным физикохимическим взаимодействием между молекулами (наличие я-элек-тронов) (исключение составляет бензол и циклогексан, имеющие близкие свойства). [c.71]

    Различия в Wq для стабилизированного и активированного цеолитов составили 20-30 % отн. при опреледении по н- g и 6-II % отн. по Видимо, более плотная упаковка молекул гексана в полос- [c.29]

    Следовательно, ббльшую чувствительность к свойствам, характеризующим способ упаковки молекул растворителя, проявили димеры доноров, образованные неплоскими молекулами. У всех рассмотренных выше КПЗ 1 2 наименьшая стойкость обнаружена в Д ( эффект диоксана ). Это не противоречит результатам, полученным при исследовании КПЗ 1 2 на основе 2,6-ДМН и менее активных акцепторов [10]  [c.131]

    Моноалкилзамещенные тиациклопентаны СпНап5 интересны в том отношении, что во всем этом гомологическом ряду соотношение углерода и водорода остается постоянным, а основное влияние на величину плотности оказывает длина цепи алкильного заместителя, процентное содержание серы и наличие циклизации, причем влияние последнего фактора, способствующего более плотной упаковке молекул в жидкости, по-видимому, является доминирующим, чем и объясняется значительно более высокая плотность циклических сульфидов по сравнению с алифатическими. С ростом молекулярного веса уменьшается процентное содержание серы, влияние цикла начинает подавляться нарастающим действием бокового алифатического радикала — ив целом все это приводит к уменьшению плотности моноциклических сульфидов. [c.153]

    На поверхностное иатяжение молекулярных растворов влияет ряд факторов (концентрация растворенного вещества, температура, давление и т. д.). Растворенные вещества могут изменять поверхностное иатяжение, и они подразделяются на поверхностно-активные и поверхностно-инактивные. Следует всегда иметь в виду, что с повышением температуры происходит у.меньшение плотности упаковки молекул, снижается энергия межмолекулярных взаимодействий, в результате чего снижается поверхностное натяжение в нефтяных системах. При критической температуре оно равно нулю. [c.125]

    Кристаллы аргона и других инертных газов являются молекулярными с высокими координационными числами (плотной упаковкой молекул в кристалле). Так, аргон имеет кубическую гра-иецентрированную кристаллическую реп1етку (см, рис. 50, а). [c.181]

    В условиях практики модифицировать поверхности материалов могут также присутствующие в нефтях естественные ПАВ смолы, асфальтены, нефтяные кислоты и др. При адсорбции нефтяных ПАВ с достаточно плотной упаковкой молекул полярные подложки могут преобразоваться в неполярные с относительно низким уровнем свободной поверхносиюй энергии. Возможность такой инверсии экспериментально была подтверждена в работе /30/, в которой было показано, что нефтяные ПАВ по-разному модифицируют поверхности различной природы /30/ они существенно меняют свойства гидрофильных поверхностей, снижая их гидрофильность, и практически не сказываются на гидрофобных поверхностях. Так, значе- [c.100]

    Этот подход к оценке растворимости полимеров заключается в следующем. Структура полимеров определяется на молекулярном уровне конформациями, конфигурацией и способами взаимной упаковки макромолекул. Действующий объем атома каждого вида зависит от его окружения, т.е. от природы валентносвязанных с ним атомов и от коэффициентов упаковки молекул вещества, в которые входит данный атом. [c.96]

    Кажущиеся моляльиые объемы Фу и теплоемкости Фс глицина, аланина, -аланина и их нейтральных аналогов ясно указывают иа существование более плотной и более упорядоченной упаковки молекул воды (гидратной оболочки) вокруг заряженных частиц. Метильная группа аланина — вот причина стериче-ского отталкивания, которое мешает сольватированию. Однако, как показывают данные для -аланина, сольватация нарушается при разделении зарядов, т. е. при ослаблении взаимного притяжения зарядов в цвиттер-ионе. Значения Фс согласуются с этим объяснением меньшие значения отрал<ают существование более упорядоченной системы или меньшую степень свободы, а следовательно, меньшую способность поглощать тепло при увеличении температуры. [c.44]

    Между количественными и качественными изменениями в нефтяной дисперсной системе существует зависимость, которая определяется соотношением поверхностной и объемной энергий взаимодействия компонентов, составляющих надмолекулярную структуру. Обладая нескомпенсированной избыточной поверхностной энергией, зародыши формируют вокруг себя сольватные оболочки определенной толщины из молекул дисперсионной среды. Вместе с сольватной оболочкой зародыш образует сложную структурную единицу (ССЕ), которая при изменении вне-пших условий может разрушаться или расти. Во втором случае формируются вторичные ССЕ, размеры которых — радиус надмолекулярной структуры и толщина сольватной оболочки, а также упаковка молекул в надмолекулярной структуре могут изменяться по мере изменения межмолекулярного взаимодействия среды [ 16]. [c.47]

    Как видно из табл. 9.18, величина цеолитов типа А возрастает при увеличении температуры и уменьшается с увеличением молекулярной массы адсорбируемого компонента. Так, для молекул нормального октана величина при 200°С составляет 0,211 смУг, апри 400°С — 0,245 см /г, то есть увеличивается почти на 15%. При температуре 300°С с увеличением молекулярной массы нормального парафина (от н-октана до н-пентадекана) величина уменьшается от 0,239 см /г до 0,200 смУг. Такой характер изменения величины можно объяснить различной плотностью упаковки молекул нормальных алканов в порах молекулярных сит. [c.295]

    В связи с этим далее были вычислены коэффициенты упаковки молекул нормальных алканов в полостях цеолитов, причем за величину принимали отношение значений предельного сорбционного объема при разных температурах процесса к максимальному значению для данного углеводорода. Значения коэффициентов упаковки для всех исследованных образцов цеолитов приведены в табл, 9.19,1де о тчетливо видно, что для всех образцов цеолитов характер зависимости упаковки молекул от температуры один и тот же. Максимальная упаковка 1) наблюдается при наиболее высоких температурах опыта (350 — 400°С). Увеличение молекулярной массы углеводорода способствует более рыхлой упаковке молекул. [c.297]

    Молекулы некоторых веществ, помимо ненаправленных ван-дер-ваальсовских связей, могут соединяться также водородными связями, которые обладают определенной направленностьто в пространстве и являются связями промел уточного типа между межмолекулярными и межатомными связями. Это приводит к очень существенному осложнению процесса отвердевания молекулы соединяются в зависимости от количества водородных связей, приходящихся на одну молекулу, в цепи, сетки или пространственные каркасы, что исключает плотнейшую упаковку молекул, но не кристаллизацию вещества. Получаются более рыхлые структуры, чем при кристаллизации под действием только ненаправленных связей. Если при этом присутствуют подходящие по величине посторонние молекулы, то они включаются в структуру, размещаясь между цепями, сетками или в полостях каркаса, и образуются соединения включения (см. ниже), которые имеют довольно высокую плотность. [c.21]


Смотреть страницы где упоминается термин Упаковка молекул: [c.102]    [c.424]    [c.361]    [c.23]    [c.83]    [c.83]    [c.29]    [c.153]    [c.27]    [c.90]    [c.27]    [c.286]   
Биохимия Том 3 (1980) -- [ c.70 , c.270 ]




ПОИСК







© 2025 chem21.info Реклама на сайте