Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан в нефтяных газах

    Из широко применяемых сжатых газов горючими являются водород, ацетилен, метан, нефтяные газы (этан, пропан. [c.15]

    Большинство применяемых сжатых газов в смеси с воздухом, а особенно с кислородом, легко взрываются, К этим газам относятся водород, ацетилен, метан, нефтяные гаЗы и др. Кислород также относится к числу огнеопасных газов, так как энергично поддерживает горение. Кроме перечисленных газов, которые могут вызвать взрыв и пожар, есть газы, которые могут привести к отравлениям (например, хлор и фосген). Чтобы избежать несчастных случаев при пользовании газовыми баллонами, необходимо соблюдать все меры предосторожности и руководствоваться следующими правилами. [c.95]


    Из широко применяемых сжатых газов горючими являются водород, ацетилен, метан, нефтяные газы (этан, пропан, бутан, этилен, пропилен), светильный газ. Эти газы горят на воздухе, и смеси их с воздухом, а в особенности с кислородом, взрывоопасны. [c.15]

    Большинство применяемых сжатых газов в смеси с воздухом, а особенно с кислородом, легко взрываются. К этим газам относятся водород, ацетилен, метан, нефтяные газы и др. Кид- [c.102]

    Природные горючие газы представляют собой смесь газообразных углеводородов они содержатся в земной коре, образуя иногда огромные газовые месторождения. Кроме того, горючие газы сопутствуют нефти природный нефтяной газ) и часто в больших количествах (например, в районе Грозного и Баку) выделяются из скважин в процессе нефтедобычи (попутный нефтяной газ). Главная составная часть природных газов — метан. Нефтяной газ наряду с метаном содержит этан, пропан, бутан и изобутан. Содержание этих углеводородов неодинаково для газов различных месторождений. Так, в состав нефтяного газа, добываемого в районе Баку и Саратова, входит 85—94% метана и лишь небольшое количество его гомологов. В то же время в нефтяном газе некоторых месторождений района Грозного, а также в Краснодарском крае содержание этана, пропана и бутанов достигает 50%. Иногда в нефтяном газе содержится и значительное количество паров низкокипящих углеводородов, входящих в состав бензинов поэтому он может служить источником легких бензиновых фракций (см. ниже). [c.55]

    Углеродный метод определения возраста требует очень точных измерений малых активностей и в настоящее время ограничен периодом примерно от 500 до 45 ООО лет, давая точность порядка 100 лет около нижнего предела и порядка 10 лет около верхнего. Нет сомнений в том, что в ближайшем будущем с улучшением измерительной техники будут значительно расширены эти пределы и увеличена точность результатов. Нефть, метан нефтяных газов и другие вещества органического происхождения, возраст которых измеряется геологическими масштабами, не сохранили и свободны от него. [c.49]

    Стимулом для развития промышленных процессов окисления простых парафинов до различных алифатических кислородных соединений послужила относительно низкая их стоимость. Эти углеводороды в больших количествах производятся нефтеперерабатывающими заводами, а также легко могут быть получены из природного газа. Углеводороды от пропана до пентана можно получить в достаточно чистом виде путем фракционирования природного бензина и сжиженного нефтяного газа, получаемого на газобензиновых установках. Эти установки могут также давать в большом количестве этан. В случае необходимости этан можно получать путем низкотемпературной абсорбции или конденсацией сухого газа. Метан и этан можно транспортировать посредством трубопроводов, сжиженные углеводороды посредством трубопроводов, в цистернах и океанских танкерах. [c.341]


    Нефтяные газы представлены в основном метаном, основными примесями к которому являются свободный азот и углекислота. Эти две примеси могут присутствовать совместно и порознь и увеличиваться в количестве до 100% с полным вытеснением метана. [c.36]

    Фирма И. Г. Фарбениндустри в качестве катализаторов предложила использовать фосфаты и соли бора с добавлением в исходную смесь небольших количеств окислов азота. Для этого же процесса могут быть использованы окислы кремния, цинка, магния, титана, церия и др. В настоящее время работает одна опытнопромышленная установка по неполному окислению метана с целью получения формальдегида [109]. Процесс проводится при атмосферном давлении и температуре около 600°. На смеси, состоящей из воздуха и метана в отношении 3,7 1 и содержащей 0,08% окислов азота, при девятикратной рециркуляции реагирующей смеси получается выход формальдегида 35%, считая на израсходованный метан. В последние годы советскими исследователями был разработан новый процесс получения формальдегида неполным окислением сухого природного газа (метана) и попутного нефтяного газа [110, 111]. Процесс является экономически выгодным и в настоящее время внедряется в промышленность. [c.87]

    Низшие члены этого ряда — метан, этан, пропан и бутаны (нормальный и изостроения) — газообразны. Они находятся в нефти в растворенном состоянии, а также являются основной составной частью природного и попутного нефтяного газов. Природный газ добывают из газовых скважин, попутный — из нефтяных скважин одновременно с нефтью. Природные газы состоят в основном из метана (до 98 объемн. %) и небольших количеств этана, пропана и бутанов. Попутные нефтяные газы содержат большие количества пропана и бутанов, а также более тяжелые углеводороды. Кроме того, в состав природных и попутных газов входят сероводород, азот, двуокись углерода и гелий. [c.22]

    В связи с тем, что большинство нефтяных газов содержит в значительной концентрации метан, то состав газовой фазы системы природный газ — вода, близко к составу газовой фазы системы метан — вода, что подтверждается данными табл. 34. [c.52]

    Метод 8. Вытеснение нефти углеводородными растворителями (вытеснение со смешиванием) основано на последовательной закачке в пласт углеводородного растворителя и сухого газа. Углеводородным растворителем служит сжиженный нефтяной газ, состоящий в основном из пропана и бутана. Эффективность метода достигается тем, что пропан-бутановая фракция хорошо смешивается не только с пластовой нефтью, но и с вытесняющим сухим углеводородным газом при сравнительно невысоких пластовых давлениях. Из рис. 21 видно, что критическое давление для системы пропан — пентан, которая соответствует системе пластовая нефть — растворитель, не превышает 5 МПа. Критическое давление системы растворитель — сухой газ (на рисунке — система метан— пропан) не превышает 10—11 МПа. При этом в реальных условиях зона смешивания пластовая нефть — растворитель находится в области более низких давлений, че.м зона растворитель — сухой газ. Следовательно, метод вытеснения оторочкой углеводородного растворителя может быть применен при давлении нагнетания до 10—11 МПа. При внедрении этого процесса в пласте обычно создают пропановую оторочку в размере нескольких процентов объема порового пространства, которая продвигается более дешевым рабочим агентом — метаном или метано-водяной смесью. Основные ограничения применению метода большая вероятность разрыва сплошности пропановой оторочки, что требует увеличения объемов закачки высокая стоимость и дефицитность пропана. [c.57]

    Растворимость парафина возрастает с уменьшением молекулярного веса алканового растворителя только до С5—Св. При дальнейшем снижении молекулярного веса растворителя растворяющая способность его начинает падать —в сжиженных нефтяных газах растворимость парафина по направлению от бутана к метану уменьшается. Растворимость парафина (/ пл 50°С) в углеводородных растворителях различного молекулярного веса при разных температурах [50] показана на рис. 15. [c.72]

    Самое простое соединение углерода с водородом СН4. Этот углеводород называется метаном и является основной составной частью естественного нефтяного газа. [c.7]

    Легкие нефтяные газы — метан, этилен и т. п. (при установке двух систем клапанов) [c.399]

    Чтобы судить о происхождении нефти и газа, нужно знать, из чего они состоят. Более детально состав нефти и газа рассматривается в гл. VI. Для понимания происхождения нефти важно отметить, что нефть состоит из множества разнообразных по составу и строению жидких углеводородов, в которых в растворенном виде присутствуют и твердые углеводороды, а также их производные, т. е. углеводородные соединения, в строении которых кроме углерода и водорода участвуют и некоторые другие элементы. В нефти присутствуют углеводороды, начиная с пентана, гексана, которые входят в состав легких бензинов, и кончая высокомолекулярными жидкими и твердыми углеводородами смазочных масел и смолистого остатка нефти. Нефтяной газ состоит главным образом из наиболее легких углеводородов — метана, этана, пропана и бутана. Главным компонентом является метан. [c.69]


    Конверсией называется технологический процесс переработки газообразного топлива с целью изменения его состава. Наиболее распространенными видами этого процесса являются конверсия углеводородных газов и конверсия оксида углерода (П), проводимая для удаления его из продуктов конверсии углеводородного сырья. Сырьем для конверсии являются природный газ (метан), попутный нефтяной газ, газы нефтепереработки. [c.215]

    Парафины широко распространены в природе. Низшие члены этого ряда, главным образом метан, а в значительно меньших количествах и его ближайшие гомологи, содержатся в природных газах, выделяющихся из земной коры. Они являются, например, главной составной частью так называемого нефтяного газа, который встречается в районах, богатых нефтью. В месторождениях калийных солей тоже часто присутствуют газовые смеси, богатые метаном, соляные газы (см. также стр. 38). [c.30]

    Гомологический ряд парафиновых (алкановых) углеводородов именуют также метановым рядом по названию первого его члена (гомолога) — метана (СН ). Метан (С,), этан (С ), пропан (С ) и бутаны (С являются при нормальных условиях (20°С, 760 мм рт.ст.) газами и входят в состав нефтяных газов, которые растворены в нефти, когда она находится под большим давлением в нефтяном пласте, и выделяются из нее в [c.14]

    Метан довольно часто встречается в природе. Он является основной составной частью природного газа газовых месторождений (до 97%), в значительном количестве содержится в попутном нефтяном газе (выделяющемся при добыче нефти), а также в коксовом газе. Выделяется со дна болот, прудов и стоячих вод, где он образуется при разложении растительных остатков без доступа воздуха, почему метан получил также название болотного газа. Наконец, метан постоянно скапливается в каменноугольных шахтах, где его называют рудничным газом. [c.561]

    Углеводороды С Нг +г- Алканы. Низшие члены зтого ряда — газообразные метан, этан, пропан п бутан (нормальный и изомерный) — являются составной частью нефтяного газа. [c.24]

    Получение. Основными источниками получения алканов являются природный газ (метан 98%, остальное — этан, пропан и др.). попутный нефтяной газ (метан 30—80%, этан 4—20%, пропан 5—22%, бутаны 5—20% и др.). Выа-шие алканы входят в состав нефти и получаются при ее переработке. [c.131]

    Этот метод дает особую возможность использовать в качестве сырья для химической промышленности попутный нефтяной газ. Последний, как уже знаем (стр. 59), содержит метан, этан, пропан и бутаны. Путем дегидрирования их переводят в непредельные углеводороды, являющиеся исходными веществами для многих синтезов. [c.75]

    Газы, получаемые разложением нефти при высокой тешхературе состоят главным образом из легких углеводородов, водорода, затенс также углекислоты и окиси углерода и следов азота. Из углеводородов содержатся главным образом метан, этан, этилен, пропилен н бутилены. Зна штельно меньшую роль играют пары амиленов и бензола, 1,3-бутадиен (эрнтрен), изопрен и др. Говоря о нефтяном газе, получаемом прп температурах около 1000°, можно указать, что-95% углеводородной части газа представлены 6—8 индивидами, отмеченными в таблице 84 звездочкой. [c.380]

    Газы с наибольшей теплотой сгорания образуются при нагреве нефтяного сырья и в результате различных деструктивных технологических процессов. В зависимости от процесса пере- аботки углеводородного сырья состав этих газов изменяется. Так, газ установок прямой перегонки нефти содержит 7—10% )Онана и 13—30% бутана, газ установок термокрекинга богат метаном, этаном н этиленом, газ установок каталитического крекинга — бутаном, изобутиленом и пропиленом. Многие из перечисленных газов служат ценным сырьем для химической н )омышленностн. Для нефтезаводских газов, полученных из сернистого сырья, характерно значительное содержание сернистых соединений и, в частности, сероводорода. Присутствие его в нефтяном газе крайне нежелательно, так как он вызывает интенсивную коррозию и очень токсичен. Поэтому на многих заводах газы подвергают мокрой очистке растворами этанолами-нов, фенолятов, соды и др. [c.110]

    Основным недостатком газоотбензинивающих установок является отсутствие эффективного процесса извлечения этановой фракции (этан уходит с метаном на топливо), что связано с низкой концентрацией этана в газах. В связи с этим происходит потеря больших количеств этана, содержащегося в естественных нефтяных газах. [c.209]

    Подобный метод разделения газовой смеси, получивший название гннерсорбции, применяется и промышленности для извлечения этилена из смеси его с водородом и метаном, для получения водорода из газов нофтопереработки, для разделения попутного нефтяного газа с целью извлечения пропана, бутана п бензинов и во многих других случаях. [c.263]

    Углеводородные природные газы состоят из простейших представителей парафиновых, или, как их называют, метановых углеводородов. Сюда относятся метан СН4, этан jHe, пропан aHg, бутан и изобутан, имеющие формулу СШ . В природных нефтяных газах присутствуют и пары наиболее летучих жидких углеводородов. Строение простейших парафиновых углеводородов следующее  [c.233]

    Для обессеривания сернистого кокса по первому способу применяют различные реагенты пар, воздух, паровоздушную смесь, азот, водород, метан, хлор, аммиак, нефтяные газы (низкотемпературное обессеривание с применением газов). Этот способ, в соответствии с ранее рассмотренным механизмом реакций прокаливания при низкнх температурах, основан либо на быстром отводе H2S из зоны реакции, либо на химическом связывании продуктов первичного распада сернистых соединений. Подача твердых реагентов (А1СЬ, NaOH и др.), которые могут связывать HjS, также должна способствовать глубокому обеосериванию. [c.205]

    Белки биологического синтеза. Одна из ближайших проблем современности — изыскание возможности расширения ресурсов кормового белка — необходимой составной части животной иищи. За последние 20 лет в этой области достигнуты выдающиеся успехи. В настоящее время во всех технически развитых странах организовано нромышленное получение кормового белка [20]. Сырье.м являются чистые нормальные алканы нефтяного газойля, метан природного газа и метанол [21]. [c.326]

    Если исходным сырьем служит природный газ, то рекомендуется предварительно удалить из него все углеводороды, начиная с пропана, а также ограничить известным пределом содержание этана [9]. В литературе [10] имеется описание установки фирмы Роом энд Хасс для получения цианистого водорода. На этой установке впервые в мире процесс Андруссова был применен к метану нефтяного происхождения. Получающиеся выходы цианистого водорода аналогичны лем, которые были приведены выше (см. работу [7]). [c.377]

    Все нефтяные местороледения сопровождаются газообразными углеводородами, в которых всегда преобладает метан. Количество газа в куб. метрах на тонну нефти называется газовым фактором. Эта величина прямо указывает на родство газа и нефти и позволяет рассматривать газ как легкую часть нефти, т. е. как фракцию нефти. Содержание в газе бутана, пентана и небольшого количества высших гомологов еще больше сближает газ с нефтью. Собственно говоря, в геохимическом понимании природный газ и гкидкая нефть, содержащая в растворенном состоянии твердые компоненты (парафин, смолистые вещества), должны рассматриваться как один комплекс. Изучение, нанример, группового состава нефтц в этом смысле приближается по своей значимости к изучению какой-нибудь одной более или менее широкой фракции и пе может дать правильного заключения о тех взаимоотношениях, которые связывают нефть с газом в одно целое  [c.71]

    Характеристика попутных нефтяных газов и продуктов их переработки. В состав природных и попутных нефтяных газов входят углеводороды, метан, этан, пропан, и п- и изобутаны, п- и изопетнтаны, гексан и т. д., а также сероводород, меркаптаны, углекислый газ, азот, гелий. Попутные нефтяные газы содержат наибольшее количество тяжелых углеводородов. [c.45]

    Углеводороды попутных нефтяных газов служат для получения топливоного сухого газа (главным образом, метан и этан), сырья для получения этилена (этановая фракция), сжиженных газов (пропан, изобутан и п-бутан), стабильного газового бензина (более тяжелые углеводороды). Состав попутных нефтяных газов являе1ся характерным для каждого месторождения. [c.45]

    В промышленности. Практически все алканы можно получить из нефти или природного газа. Природный газ состоит в основном из мстана СН (80-97%). Метан содержится наряду с другими газообразными алканами - этаном С Н , пропаном С,И,, бутаном С,Н в попутных нефтяных газах. Жидкие алканы содержатся в нефти. Из нефти их выдел.чют при помощи перегонки, [c.329]

    Основной частью природного газа является метан, в среднем его содержится по объему 80—98%. В попутном нефтяном газе содержится значительно меньле метана (30—50%), но больше его ближайших гомологов этана, пропана, бутана, пентана (до 20% каждого) и других предельных углеводородов. [c.518]

    Природный и попутный нефтяной газы представляот собой дешевое топливо и ценное химическое сырье. Возможность использования попутного нефтяного газа даже шире, так как наряду с метаном в нем содержатся значительные количества других УВ. Из них получают непредельные углеводороды, из которых в свою очередь производят пластмассы, каучуки, резины, органичесн ие кислоты, спирты и т. д. [c.518]


Смотреть страницы где упоминается термин Метан в нефтяных газах: [c.21]    [c.84]    [c.188]    [c.211]    [c.212]    [c.50]    [c.313]    [c.391]   
Общая химическая технология Том 1 (1953) -- [ c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Нефтяные газы



© 2025 chem21.info Реклама на сайте