Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обессеривание сернистых соединений

    До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]


    Цеолиты эффективно очищают от серы не только углеводородные газы, но и жидкие фракции — на газобензиновых заводах, газофракционирующих установках и т. д. Примером широкого применения цеолитов для очистки от серы углеводородов в жидкой фазе может служить очистка пропана. Особенно высокие требования по содержанию серы предъявляются к углеводородам, подвергаемым каталитической переработке, полимеризации и т. п. Применение цеолитов позволяет вдвое снизить содержание сернистых соединений в циклогексане, используемом в качестве растворителя при полимеризации. Не меньшее значение имеет обессеривание и для углеводородов, входящих в состав бензинов. [c.112]

    При гидрогенолизе индивидуальных сероорганических соединений и обессеривании узких нефтяных фракций порядок гидрообессеривания по сере обычно составляет п, = 1. При гидро-обессеривании сырья широкого ракционного состава вследствие содержания в нем сернистых соединений, сильно различающихся по реакционной способности, кинетический порядок по сере может изменяться от 1 до 2 и более. [c.207]

    Гидроочистку прямогонных фракций проводят лишь для удаления сернистых соединений это можно осуществлять при относительно невысоком парциальном давлении водорода в процессе [61]. На рис. 45 приведены результаты обессеривания прямогонного дизельного топлива, полученного из восточных нефтей СССР и содержащего 1 вес. % серы, при температуре 380° С, удельной объемной скорости подачи сырья 1,0 в зависимости от парциального давления водорода. [c.203]

    Изучение окисляемости масел, полученных из сернистых нефтей, приводит многих исследователей к мысли о том, что чрезмерное обессеривание масел даже таких, как трансформаторное, не говоря уже о турбинных, моторных и других, вряд ли можно считать целесообразным. Наоборот, по некоторым данным [84], содержание в трансформаторных и турбинных маслах до 0,5% серы (особенно сульфидной) оказывается полезным, так как увеличивает противоокислительную стабильность масла, снижает его коррозионную агрессивность и повышает смазочную способность. Следует отметить, что для масел различного назначения существует, вероятно, свой оптимум содержания сернистых соединений. Для трансформаторных и турбинных масел он равен примерно 0,5% (в пересчете на серу), для моторных масел этот оптимум значительно выше—1—1,2%, а для трансмиссионных еще выше. [c.90]

    Внутри группы сернистых соединений скорость обессеривания уменьшается с увеличением молекулярной массы. [c.83]

    Прежде чем изучать более детально главнейшие, применяемые ныне процессы очистки, осветим подробнее этот важный вопрос по обессериванию нефтяных продуктов, перечислив лишь вкратце действия различных химических реактивов на известные сернистые соединения. I [c.171]


    Цеолиты являются прекрасными поглотителями сернистых соединений, одновременно с удалением которых можно осуществить также глубокую осушку газа. Цеолиты адсорбируют преимущественно сероводород. В области очень малых концентраций сероводорода адсорбционная способность цеолитов остается достаточно высокой для их практического применения, так как при этом достигается полное обессеривание. [c.111]

    Количество тепла, выделяемое при гидрогеиолизе сернистых соединений (на 100 кг сырья) при заданной глубине обессеривания, равной 0,9, составит [c.152]

    Для всех видов сырья степень обессеривания возрастает с повышением температуры, но до известных пределов. Каждый вид сырья имеет свой максимум температуры, после которого скорость реакций разложения и насыщения непредельных углеводородов увеличивается быстрее, чем скорость реакции гидрирования сернистых соединений. Избирательность действия катализатора по отношению к сернистым соединениям замедляется, возрастает выход газа, легких продуктов, расход водорода. Увеличивается коксообразование. Вследствие этого для каждого вида сырья и катализатора существует стой оптимальный интервал температур. [c.137]

    Важным фактором является кратность циркуляции. С экономической точки зрения заданное соотношение целесообразно поддерживать циркуляцией водородсодержащего газа. Для каждого вида сырья имеется свой оптимум кратности циркуляции, после которого эффективность гидроочистки снижается и увеличивается скорость реакций разложения и насыщения непредельных углеводородов по сравнению со скоростью реакции гидрирования сернистых соединений. Это в свою очередь ведет к уменьшению избирательного действия катализатора по отношению к сере, и скорость обессеривания замедляется. [c.137]

    Наиболее эффективным методом, обеспечивающим полное обезвоживание, является применение молекулярных сит. Их широко используют на установках фтористоводородного алкилирования, но на установках сернокислотного алкилирования встретились некоторые трудности. Молекулярные сита можно использовать также для доизвлечения некоторых сернистых соединений, остающихся после предварительного обессеривания сырья [2]. В условиях продолжающегося роста цен на серную кислоту становится, однако, оправданным применение молекулярных сит и на установках сернокислотного алкилирования. [c.218]

    Каталитическое гидрирование под давлением водорода сернистых соединений было подробно исследовано Молдавским [2]. Он показал, что в условиях гидрирования при температуре 230°С и давлении 30 ат в присутствии катализатора (сернистого молибдена) глубина превращения меркаптанов различного строения неодинакова. Сульфиды, за исключением дибензилсульфида, разрушаются с большим трудом, чем меркаптаны. Ди-этилсульфид более устойчив, чем этилмеркаптан, и менее устойчив, чем диэтилсульфид. Устойчивость сернистых соединений увеличивается в следующем порядке меркаптан < дисульфид < сульфид < тиофен. С увеличением молекулярного веса сернистых соединений скорость гидрогенизационного обессеривания уменьшается. Этим, по-видимому, объясняется возможность применения более мягкого режима гидрирования при обессеривании бензиновых и лигроиновых дистиллятов, чем при очистке более тяжелых дистиллятов. [c.35]

    Одновременно с гидрированием сернистых соединений в условиях гидрогенизационного обессеривания протекает изомеризация парафиновых и нафтеновых углеводородов. Эта реакция в зависимости от свойств ка-, тализатора наблюдается в той или иной мере при любых условиях обессеривания. [c.36]

    При гидрировании сырья, содержащего значительные количества сернистых соединений (обессеривании), последние легко разлагаются и переходят в сероводород. Расход водорода на гидроочистку зависит от вида сернистых соединений. Его можно определять по формуле [c.164]

    Алюмокобальтмолибденовый катализатор способствует глубокому обессериванию и обессмоливанию прямогонных дистиллятов и дистиллятов вторичного происхождения при сравнительно мягких условиях гидрирования (температура 400—420° С, общее давление 15— 20 ат). Удаляются не только сернистые соединения, но и значительная часть непредельных углеводородов, а общее содержание ароматических углеводородов уменьшается всего на 5—Ю7о [18, 19]. В случае повышения давления интенсивность всех реакций гидрирования, в том числе и насыщения водородом ароматических углеводородов, возрастает [20, 21]. Выше 430° С скорость гидрирования указанных соединений несколько увеличи- [c.186]

    Парафино-циклопарафиновые углеводороды, полученные при гидрировании асфальтенов, близки по составу и свойствам к группе высокомолекулярных углеводородов, выделенных непосредственно из нефти. Основное отличие их заключается в более высокой цикличности (2,1 кольца на молекулу против 1,2) ив небольшом содержании серы (0,23%), соответствующем наличию примеси сернистых соединений (2,3%). Полное обессеривание этой группы углеводородов еще больше увеличит подобие их с аналогичной группой углеводородов, содержащихся в нефти. [c.131]


    Сернистые соединения в присутствии платинового катализатора подвергаются гидрогенолизу до сероводорода и соответствующего углеводорода. При содержании серы в исходном сырье от 0,1 до 0,5 вес. % глубина обессеривания составляет не менее 95% и не зависит от строения сернистого соединения и углеводорода, в котором оно растворено. По мере уменьшения содержания серы в сырье степень обессеривания снижается, и наиболее трудно удаляются последние 0,01—0,005 вес. % серы [33]. [c.27]

    Обессеривание сырья каталитического риформинга осуществляют путем гидроочистки. Гидрогенизационное обессеривание основано на удалении серы из исходного сырья в результате взаимодействия сернистых соединений с водородом в присутствии катализатора. Наряду с сернистыми соединениями при гидроочистке удаляются смолы, непредельные углеводороды, а также азотистые и металлоорганические соединения. [c.78]

    Сырье, предназначенное для каталитического риформинга, подвергают гидроочистке. Гидрогенизационное обессеривание основано на удалении серы из исходного сырья в результате взаимодействия сернистых соединений с водородом в присутствии катализатора. [c.12]

    Ограничивающей стадией процесса до момента начала графитации является разложение вторичных сероуглеродных и первичных термостойких соединений серы. Степень и скорость разрушения этих соединений можно увеличить дальнейшим повышением температуры связыванием продуктов распада первичных сернистых соединении углеводородными радикалами и атомарным водородом или металлоорганическими соединениями, не допуская их хемосорбции быстрым иагревом углерода до температуры обессеривания и использованием химической активности и кинетической энергии летучих веществ (в том числе выделяющихся сернистых соединений) для разрушения промежуточных комплексов. [c.195]

    Внутри группы сернистых соединений скорость обессеривания уменьшается с увеличением молекулярной массы. Так, этилмеркап-тап менее устойчив, чем децилмеркаптан. [c.9]

    Следует отметить, что рост степени обессеривания пропорционален повышению температуры до определенных пределов. Каждый вид сырья имеет свой максимум температуры, после которого увеличивается скорость реакций разложения и насыщения ненредельных Зчлеводородов по сравнению со скоростью реакции гидрирования сернистых соединений, в связи с чем уменьшается избирательность действия катализатора по отношению к сере и рост степени обессеривания замедляется, возрастает выход газа, легких продуктов п [c.44]

    В процессах обессеривания лигроинов и газойлей при давлении 18— 30 ат и температуре 260—427° [4, 13] в качестве катализатора широкое применение нашел молибдат кобальта на активированной окиси алюминия. При этих условиях происходит гидрогенизация олефиновых углеводородов, но практически не идет гидрогенизация присутствующих в сырье ароматических углеводородов. Добавление солей щелочных металлов к этому катализатору подавляет гидрогенизацию олефиновых углеводородов, ие тормозя, однако, гидрогенизации сернистых соединений 5]. При более высокой температуре или при более низком давлении становится заметной реакция дегидрогенизации присутствующих в лигроине нафтенов до ароматических углеводородов и водорода (как в гидроформинге). При регулировании рабочих условий процесса можно обеспечить образование небольшого избытка водорода сверх того количества его, которое необходимо для обеспечения гидрогенизации олефинов и обессеривания [2] процесс становится независимым от внешнего поступления водорода. При этих условиях управление тепловым режимом реактора осуществляется легче, так как теплота, выделяющаяся при экзотермической реакции гидрогенизации олефинов и сернистых соединений, почти компенсируется теплотой, поглощаемой при эндотермической реакции дегидрогенизации. Однако при таких, более жестких условиях работы скорость гидрогеиизации олефинов [5] может снижаться, приближаясь к равновесию олефин — парафин, и появляется тенденция к отложению угля на катализаторе. Необходимость чередования процесса с регенерацией путем продувки воздухом для удаления с катализатора углеродистого осадка ограничивает процесс, сокращая продолжительность рабочих периодов по сравнению с процессом типичной обычной гидрогенизации. [c.279]

    Каталитический крекинг сопровождается достаточно полным обессериванием полученного бензина, но это обессеривание часто осуш ествляется ценой быстрого старения катализатора. Синтетические алюмосиликатные катализаторы более устойчивы к сернистым соединениям, чем активированные природные глины устойчивость последних к действию серы может быть повышена. Вследствие глубокого обессеривания бензины сравнительно легко поддаются очистке. Значительная часть серы удаляется в виде тиофенолов (ср. с тиофенами при термическом крекинге) при ш елочной промывке. [c.325]

    О гидрогенизации (или бергинизации) как методе обессеривания речь будет ниже, здесь же я ограничусь указанием нескольких патентов и ряда раибот, в которых авторами было проведено гидрирование некоторых индивидуальных сернистых соединений или узких фракций углеводородов, содержапщх сернистые соединения. [c.175]

    Сущность метода Майля заключается в обессеривании в парофазном состоянии ароматических углеводородов. Он применяет хлористое олово, которое разлагает сернистые соединения, в частности тиофены. Применение процесса дало превосходные результаты, и он с успехом употребляется ompagnie du gaz de Paris для очистки бензола. [c.225]

    Октановое число в чистом виде (без присадки ТЭС) после обессеривания нресс-дистиллята в паровой фазе при 400 °С практически не изменяется, а октановое число с 3 мл этиловой жидкости на 1 кг бензина растет на 2 пункта, т. е. повышается приемистость к ТЭС. Обработка реагентом не вызывает значительных потерь, практически не влияет на фракционный состав и йодное число, т. е. не вызывает обычных изменений в углеводородном составе, которые наблюдаются в процессе алюмосиликатной очистки. Анализ сернистых соединений в исходном пресс-дистилляте и после его обработки (табл. 32) показывает, что обработка в известной степени отражается на составе сернистых соединений (анализ по Фарагеру). [c.120]

    Данные табл. 33 показывают, что удаление части сернистых соединений КЗ пресс-дистиллята >] пдкофазными методами обессеривания, практически [c.121]

    Относительные скорости, с которыми может протекать гидрогенизационное обессеривание различных нефтяных фракций, изучались, главным образом, качественно как на индивидуальных соединениях, так и на нефтяных фракциях. Рассмотрение термодинамики гидрообессеривания показывает, что процесс гидроочистки позволяет эффективно удалять все типы сернистых соединений нетиофеновая сера удаляется легче, чем сера тиофеновых соединений. Разрушение происходит в следующем порядке меркаптаны, полисульфиды, сульфиды, производные тиофена. Кроме того, скорость гидрогенизационного обессеривания уменьшается с увеличением молекулярного веса удаляемых сернистых соединений. [c.12]

    Для новышения селективности гидроочистки крекинг-бензинов применены новые технологические приемы к сырью добавляется природный тормозитель гидрирования олефинов, гидроочистке подвергается не весь бензин, а фракция > 182 °С, в которой находится большая часть сернистых соединений, но мало олефинов, преобладающих в головных фракциях. В длительном опыте при 20 кгс/см глубина обессеривания фракции > 182 °С составляла 84% при остаточном содержании олефинов 40%. По отношению ко всему бензину достигалась 80%-пая очистка без изменения октанового числа, тогда как гидроочистка всего бензина понижала октановое число на 6 пунктов [c.56]

    Выбор схемы обусловливается качеством гидроочищаемого сырья. Обычно схема с циркуляцией водородсодержащего газа используется прп обессеривании бензиновых фракций с повышенным (>0,1%) содержанием сернистых соединений и непредельных углеводородов. Схема на проток применяется для гидро- [c.140]

    Наличие сернистых соединений в нефтяных коксах влияет на механизм и кинетику процесса графитации. На рис. 43 показано изменение межслоевого расстояния в кристаллитах коксов ФНПЗ и НУ НПЗ и содержания в коксах серы в зависимости от температуры обработки. Из рисунка видно, что оо2 снижается для разных коксов неодинаково. На рентгенограмме кокса НУ НПЗ, начиная с интервала обессеривания, в отличие от рентгенограммы малосернистого кокса, появляется вторая фаза, свидетельствующая о наличии гетерогенной графитации, что согласуется с литературными данными [5, 147], По-видимому, гетерогенная графитация протекает через газовую фазу, переносчиком углерода в этом процессе является сера. При температурах до 2200 °С лучше графитируется сернистый кокс, при более высоких температурах с оо2 малосернистого и сернистого кокса различаются незначительно, что обусловлено удалением сернистых соединений до достижения этой температуры. Это обстоятельство было подтверждено также при графи-тацни нефтяных коксов с различным содержанием серы материнской и введенной искусственно. [c.149]

    Второй порядок является, разумеется, кажущимся и обусловлен тем, что скорость реакции с глубиной ее протекания снижается значительно быстрее, чем для реакций первого порядка. Урав1не-ния второго порядка нельзя применять для любого сырья в зависимости от состава сернистых соединений уравнение скорости обессеривания в виде [c.267]

    При снижении парциального давления водорода до 1,3— 1,5 МПа и при 400—420°С очистка бензиновых фракций проходит в режиме автогидроочистки, т. е. водород, необходимый для гидрирования сернистых соединений, образуется при дегидрировании нафтеновых и парафиновых угле1водородов, и вводить водород извне не нужно. Глубина обессеривания при этом, конечно, ниже,, чем при высоких парциальных давлениях водорода, срок работы катализатора уменьшается в результате закоксовывания активных центров гидрирования-дегидрирования до 600—1000 ч. С утяжелением сырья парциальное давление водорода без ввода водорода извне сильно снижается в результате увеличения содержания в вышекипящих фракциях ароматических углеводородов, поэтому для фракций тяжелее бензина автогидрсочистка неприменима вследст- [c.271]

    Скорость парофазного обессеривания узких нефтяных фракций пропорциональна парциальному давлению сернистых соединений (первый порядок реакций) [3]. Для дистиллята, выкипающего в более широких пределах, реакция имеет иногда другой кажущийся порядок и наблюдается меньшая скорость гидрирования высокомолекулярных сернистых соединений [4]. Для гидрообессери-вания топливных дистиллятов бензиновых и дизельных нефтяных фракций сохраняется первый порядок реакции [5]. То же наблюдается при гидрировании индивидуальных сернистых соединений [3]. [c.36]

    В смеси с диметилдисульфидом и бутилмеркапта-ном (содержание серы в смеси 1,25 вес. %) автогидроочистка протекает достаточно глубоко — степень обессеривания сырья выше 96%. В присутствии тиофена процесс идет значительно хуже — парциальное давление водорода при очистке сырья, содержащего 0,75 и 1,25 вес. % серы, составляло соответственно 9,1 и 3,2 ат. Это указывает на снижение дегидрирующей активности алюмокобальтмолибденового катализатора в присутствии тиофена. При промышленном осуществлении процесса автогидроочистки дизельного топлива дегидрирующая активность катализатора также значительно снижается. Последнее обусловлено наличием в средних нефтяных фракциях значительного количества циклических сернистых соединений, в присутствии которых действие катализатора по отношению к реакциям образования водорода ухудшается. [c.40]

    Существует две схемы блока предварительной гидроочистки установок каталитического риформинга а) с системой для циркуляции водородсодержащего газа при этом количество водорода, подаваемого на гидроочистку, определяют в зависимости от расхода его в процессе б) без циркуляции газа, т. е. весь водородсодержащий газ, получаемый в процессе риформинга, подают в реактор гидроочистки на проход . Первую схему используют обычно при обессеривании фракций с повышенным содержанием сернистых соединений (более 0,1 вес. %) и непредельных углеводородов. В этом случае можно специально подбирать кратность циркуляции водородсодержащего газа, обеспечивающую глубокую степень обессеривания сырья и достаточную длительность безрегенерационной работы катализатора. [c.192]

    На основании результатов, полученных при обессеривании газойля нефти Среднего Востока методом каталитического гидрирования [64], было высказано предположение, что сернистые соединения исследованного газойля на 30—40% состоят из структур, имеющих в молекуле бензтиофеновое ядро. Наличие характерической полосы для бензтиофена при 9,48 мц в инфракрасном спектре позволило разработать количественный метод определения небольших концентраций бензтиофена в присутствии нафталина при помощи инфракрасной спектроскопии [68]. Точность этого метода иллюстрируется следующим примером. В техническом образце нафталина было определено химико-аналитическим методом содержанием серы, равное 0,30%, что отвечает наличию в смеси примеси 1,26% бензтиофена методом инфракрасной спектроскопии содержание бензтиофена было найдено равным 1,30%. [c.354]

    Основываясь на различной термической стойкости разных групп сераорганических соединений. Мак Кой и Вейс [114] исиользовали процесс термокаталнтического обессеривания как метод группового анализа сернистых соединений нефтяных фракций. Оказалось, что над окисью алюлшния при 450° С разлагаются только сульфиды и меркаптаны. Тиофены в этих условиях не разлагаются. Это давало возможность раздельного определения двух групп сернистых соединений в нефтяных фракциях. Применялась такая последовательность анализа определяли суммарное содержание серы, затем проводили термо-каталитическое обессеривание н по выделившему сероводороду устанавливали содержание сульфхщной серы содержание тиофеновой серы определяли ио разности. [c.372]

    Первую схему используют обычно при обессеривании фракций, содержащих более 0,1 вес. % сернистых соединений. В этом случае кратность циркуляции водородсодержащего газа должна быть такая, которая обеспечивала бы высокую степень обессеривания сырья и достаточную длительность безрегенерационной работы катализатора блока гидроочистки. [c.87]

    В. Д. Тюрин с соавторами [170] сообщили о разработке процесса обессеривания топлив с применением карбонилов железа, особенно додекарбонила Рез(СО)12, которые восстанавливают меркаптаны, сульфиды и дисульфиды до элементной серы, образуя прочные комплексы, в которые в качестве лигандов входят остатки КЗ (комплексные меркаптиды). Последние отделяются фильтрованием и адсорбцией и могут использоваться для получения концентрированных смесей сернистых соединений либо сульфоновых кислот. Благодаря высокой прочности комплексов удаляются не только низшие, но и высокомолекулярные соединения, содержа-Щ иеся как в легких светлых, так и в тяжелых нефтепродуктах — вплоть до мазута. Так, при очистке мазута содержание серы снижается с 0,56 до 0,23% (масс.). Наряду с уменьшением содержания серы понижается содержание азотистых и кислородных соединений (а в легких продуктах и диенов), так как эти соединения также образуют комплексы с карбонилами жел-еза. [c.268]

    Исследования [65, 112, 35], проведенные за последние 20— 25 лет, показали возможность обессеривания нефтяных углеродов. Сведения о формах связи и взаимодействия нефтяных коксов с сернистыми соединениями были приведены ранее (см. с. 120). Гюльмисарян и Гилязетдинов [35]. также считают, что при достаточном времени контакта и соответствующих температурах карбо-низации на поверхности углерода в присутствии сернистых соеди- [c.202]

    Для обессеривания сернистого кокса по первому способу применяют различные реагенты пар, воздух, паровоздушную смесь, азот, водород, метан, хлор, аммиак, нефтяные газы (низкотемпературное обессеривание с применением газов). Этот способ, в соответствии с ранее рассмотренным механизмом реакций прокаливания при низкнх температурах, основан либо на быстром отводе H2S из зоны реакции, либо на химическом связывании продуктов первичного распада сернистых соединений. Подача твердых реагентов (А1СЬ, NaOH и др.), которые могут связывать HjS, также должна способствовать глубокому обеосериванию. [c.205]


Смотреть страницы где упоминается термин Обессеривание сернистых соединений: [c.448]    [c.122]    [c.295]    [c.296]    [c.267]    [c.37]    [c.184]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.841 ]




ПОИСК







© 2025 chem21.info Реклама на сайте