Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь, закись адсорбция

    Адсорбция углеводородов на окислах металлов изучена недостаточно [59]. Одним из простых окисных катализаторов является система закись —окись меди, на которой исследована адсорбция [c.51]

    Для окислительного катализа имеет большое значение доступность центров адсорбции, поскольку необходимо, чтобы углеводород и реакционноспособный кислород располагались на определенном расстоянии (если подвижность адсорбированных молекул невелика). Стоун [9] считает, что закись меди более активна в окислительном катализе вследствие особого расположения кислорода на гранях, преимущественно выходящих на поверхность в этих структурах. При введении различных электроотрицательных добавок в серебро селективность окисления этилена в окись этилена зависит, по данным [12], от ионного радиуса металлоидов, входящих в состав примесей. Это, вероятно, связано с экранированием атомов серебра на поверхности и изменением вероятности адсорбции компонентов реакции. [c.230]


    Данные изотопного анализа показали, что на простых окислах (закись меди) и на сложных соединениях (молибдаты висмута) при адсорбции пропилена отрывается атом водорода и образуется аллил, который в виде комплекса (по мнению некоторых исследователей) или как радикал закреплен на поверхности. На основании спектроскопических и адсорбционных данных известно, что молекула углеводорода связана с металлическим ионом решетки твердого тела. Этот комплекс превращается в углеводород-кислородный, и тогда он связан с поверхностью не только атомом углерода, но и кислородом. [c.344]

    Если сравнить два типичных полупроводниковых катализатора — закись меди и пятиокись ванадия, то характер связи адсорбированных с их поверхностью молекул также неодинаков. На закиси меди кислород нри 300° прочно связан с поверхностью, которую он полностью покрывает даже при пониженных давлениях, а на УоОд адсорбция кислорода очень мала (1—2% от монослоя нри 300 — 400°), и при 400° начинается его десорбция. На закиси меди легко может протекать взаимодействие адсорбированного кислорода и непредельного углеводорода газовой фазы, вероятно, с образованием гидроиерекиси, в результате распада которой образуется непредельный альдегид. На УзОз ири взаимодействии с кислородом газовой фазы образуются насыщенные альдегиды (ацетальдегид, формальдегид) с меньшим числом атомов углерода, чем в исходной молекуле углеводорода. Одновременно протекает реакция с образованием ненасыщенного альдегида. [c.230]

    Мы начнем с обсуждения результатов, полученных с применением закиси меди. Данные магнитных измерений [20] подтвердили, что использованный препаративный метод позволил получить только закись меди. На поверхности, свободной от адсорбированного кислорода, окись углерода при 20° адсорбировалась обратимо. Если же при 20° предварительно проводили адсорбцию кислорода, то быстрая адсорбция окиси углерода сопровождалась выделением гораздо большего количества тепла. Например, вместо 20 ккал/моль для теплоты адсорбции окиси углерода на прогретой поверхности Гарнер, Стоун и Тили [15] в случае поверхности, содержащей адсорбированный кислород, получили для соответствующей теплоты 49 ккал/моль. Было также обнаружено, что предварительная адсорбция окиси углерода повышает теплоту адсорбции кислорода с 55 до 100 ккал/моль. Было ясно, что при этом осуществляется химическое взаимодействие. Продукт оказывался совершенно устойчивым в присутствии избытка кислорода, но в случае избытка окиси углерода происходила медленная перегонка углекислого газа в присоединенную к прибору охлаждаемую ловушку. Мы можем очень легко убедиться, что при предположении о конверсии адсорбированного кислорода в углекислый газ путем атаки окисью углерода из газовой фазы, теплота должна быть больше наблюдавшегося количества в 49 ккал/моль. Т1плота реакции СО(газ) + /202(газ) = СОг(газ) составляет 67 ккал/моль, а теплота диссоциативной адсорбции кислорода на прогретой закиси меди равна 55 ккал/моль, следовательно, разность показывает, что реакция СО(газ) + О(адс) = СОг(газ) экзотермична и ее тепловой эффект равен 67— ( /2X55), т. е. 39 ккал. Фактически продукт находится главным образом в адсорбированном состоянии, поэтому для определения реальной теплоты взаимодействия требуется прибавить молярную теплоту адсорбции углекислого газа. Если принять для последней 20 ккал/моль (ср. табл. 1), [c.313]


    О и 100° за стадией 1 будет следовать стадия 2. Это подтвердилось исследованием адсорбции кислорода на закиси меди (находящейся на подложке из металлической меди), которое показало, что при давлении ниже 1 мм при комнатной температуре адсорбируется количество, превышающее монослой. Кинетика этой хемосорбции изучалась при помощи микровесов [40]. Энергия активации для области заполнения монослоя оказалась равной 6,8 ккал/моль, но при этом, согласно уравнению Рогин ского—Зельдовича, энергия активации при поглощении должна линейно возрастать на 1,1 ккал, считая на каждый новый монослой. Скорость поглощения быстро спадает, ибо вследствие того, что возникающие вакансии не в состоянии диффундировать внутрь, создается пространственный заряд. Если газообразный кислород, находящийся над окислом, удаляют и повышают температуру, то вакансии диффундируют к границе раздела металл — окись и активность поверхности в отношении адсорбции кислорода регенерируется. Пленки закиси кобальта на кобальте ведут себя аналогично пленкам закиси меди. В этом случае теплоты адсорбции измерялись вплоть до состояния насыщения [18]. Поглощение кислорода сверх мопослойпого заполнения (стадия внедрения) сопровождается падением теплоты адсорбции и тенденцией к обратимой хемосорбции. С другой стороны, закись никеля обнаружила более низкую активность для хемосорбции кислорода, что, по-видимому, обусловлено большей трудностью регенерации поверхности [16]. Энгель и Хауффе [41] показали, что при более высоких давлениях (от 30 до 200 мм) вторую стадию поглощения можно обнаружить кинетически при 25° и это связано со внедрением кислорода в решетку, подчиняющимся уравнению (7). [c.332]

    Дюбар [53] показал, что кислород и влажный воздух оказывают влияние на полупроводниковые свойства закиси меди при ком натной температуре, но первые систематические исследования адсорбции на окислах таким способом относятся к ближайшему послевоенному периоду. В этой связи привлекла внимание методика Грэя [54, 55], согласно которой окислы для изучения адсорбции и проводимости получали окислением напыленных металлических пленок. Для первых работ была выбрана закись- [c.339]

    Используя метод меченых атомов, как будет показано ниже, можно оценить также и влияние на адсорбционный процесс индицированной неоднородности или взаимодействия между адсорбированными молекулами. 1 1сследовались кон.такты окисного типа, принадлежащие к классу полупроводников закись никеля, окись алюминия, окись цинка и металлы никель и медь. За исключением окиси цинка все контакты изучались по отношению к адсо1)бции ацетилена — простейшему углеводороду с тройной связью. Окислы цинка и алюминия изучались также по отношению к адсорбции этилового снирта. [c.284]

    С другой стороны, нет уверенности в том, что применявшаяся в работе закись никеля представляла собой чистый препарат, обладающий свойствами полупроводника/)-тйна. Во всяком случае, наши данные показали, что никакого кинетического эффекта при полимеризации изобутилена нет, если реакцию проводить в присутствии добавок закиси меди (добавка / -типа). Конечно, в изучаемой проблеме многие вопросы остаются пока дискуссионными и требующими дальнейших всесторонних исследований. Однако несомненно, что полимеризация в присутствии твердых окислов протекает в жемосорбированном слое на поверхности соответствующих добавок. Эта 1<онцепция хорошо согласуется с данными других исследователей [28—30], показавших, что при адсорбции на окиси цинка как насыщенных, так и ненасыщенных углеводородов, в условиях радиации наблюдается резкое увеличение электропроводности адсорбента. Детальный анализ этого явления, проведенный в работах Мясникова [29, 30], приводит к выводу о том, что увеличение электропроводности окиси цинка п роисходит не за счет возникновения на поверхности положительных угле водородных ионов, а в результате отдачи электрона твердой добавке хемосорбированными на поверхности атомами водорода. [c.63]

    Для изолирования отдельных аминокислот или групп аминокислот в течение последних пятнадцати лет были предложены многие новые осадители. Нит раниловая кислота и зак ись меди в настоящее время вошли в обиход наряду с обычными реактивами для количественной работы. Главным успехом, однако, является установление в результате критического изучения того факта, что 1) присутствие других аминокислот часто- неожиданным образом повышает растворимость комплекса аминокислоты и осадителя, 2) осадки могут увлекать путем образования смешанных кристаллов, адсорбции и т. п. другие [c.85]


Смотреть страницы где упоминается термин Медь, закись адсорбция: [c.61]    [c.129]    [c.411]    [c.61]    [c.57]    [c.779]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция закись

Зака.тка

Закись

Закои



© 2025 chem21.info Реклама на сайте