Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы связей СС к СН в молекулах ароматических углеводородов

    Новый этап в развитии и использовании метода люминесцентного анализа начался с 1952 г., когда Э. В. Шпольский и со<-трудники открыли эффект существования тонкой квазилинейчатой структуры электронных спектров многоатомных молекул [16, 20]. Было показано, что при использовании низкомолекулярных парафинов (Сб—Сю) неразветвленного строения в качестве матрицы в условиях низких температур (ниже — 196°С) диффузные полосы люминесценции многоядерных ароматических углеводородов способны расщепляться на ряд узких и четких линий. Было показано, что существует принципиальная возможность определять тип молекулярной структуры неизвестных соединений на основе анализа его квазилинейчатого спектра и данных о связи структуры спектра со строением молекул. [c.215]


    Для выделения н-парафинов применяются цеолиты типа 5А, т. е. с порами диаметром —5-10 мкм. Л олекулы н-парафинов имеют средний диаметр менее 5 10 мкм, в связи с чем они могут свободно проходить во внутренние полости цеолита. В противоположность этому молекулы нелинейных углеводородов, таких как изопарафины, нафтены и ароматические, характеризуются молекулярным диаметром, значительно превышающим 5 10 мкм, вследствие чего они не могут проходить через поры и остаются в рафинате. Десорбция поглощенных парафинов проводится с помощью специального растворителя. Процесс разделения может осуществляться как в паровой, так и в жидкой фазах. [c.307]

    Нарушение этого правила позволяет судить о характере взаимного влияния атомов друг на друга в молекуле (табл. 12). Видно, что вещества с одной формулой СгНбО имеют различные молекулярные рефракции, это позволяет судить об их строении. Рефракция определяется п для сложных систем типа нефтей. Экспериментально установлено, что ароматические углеводороды обладают большими значениями рефракции, чем парафиновые. Рефракция внутри гомологического ряда ароматических углеводородов возрастает по мере увеличения их цикличности. Рефрактометрические измерения позволяют приписать каждой связи определенную долю рефракции, что дает возможность судить о степени прочности тех или иных связей в молекуле. Чем прочнее связь, тем жестче закреплены атомы в молекуле, и тем меньше обусловленная ими доля рефракции. [c.59]

    Простейший пример образования такого типа связи - взаимодействие ВНз с ЫНз, ведущее к соединению НзВ-ЫНз с распределением заряда, примерно отвечающим схеме HзB -N+Hз. Более сложные конструкции подобного же типа - комплексные ионы [Т1(Н20)б]3+, [Со(КНз)б] и т.п. (Обычно при рассмотрении таких систем используют теорию кристаллического поля или теорию поля лигандов). Несколько иного рода соединения образуются при взаимодействии бензола или ароматических конденсированных углеводородов с молекулами галогенов, например с Вг2 или 12, когда ароматический углеводород играет роль акцептора, причем в качестве акцепторной выступает вакантная л-орбиталь, относящаяся ко всей сопряженной системе. [c.467]

    При определении углеродного скелета молекулы методом хроматографии от молекулы отщепляют функциональные группы и насыщают ее кратные связи. Подобный метод, описанный в недавно вышедшем обзоре [23], применяли в анализах большого числа различных соединений кислот, спиртов, альдегидов, ангидридов, простых и сложных эфиров, эпоксисоединений, кетонов, аминов, амидов, алифатических и ароматических углеводородов, нитрилов, сульфидов, галогенидов, олефинов и соединений других типов. Область применения этого метода очень широка и потому он обсуждается именно в этом общем разделе, а не в главах, посвященных анализам отдельных функциональных групп. Сам по себе этот метод дает качественные результаты, но его можно использовать и в количественных определениях. Однако основным применением этого метода является определение структуры, для которого часто необходимы количественные анализы функциональных групп. В определении химической структуры молекул важен метод, основанный на индексах удерживания углеродного [c.433]


    В работах [1, 2] было предложено разделит адсорбенты на 3 типа на основе различий в электронной структуре звеньев и связей, образующих их поверхность 1) неспецифические адсорбенты с химически насыщенной поверхностью 2) специфические адсорбенты, несущие на поверхности звенья малого радиуса с сосредоточенными положительными зарядами 3) специфические адсорбенты, несущие на поверхности локально сосредоточенные отрицательные заряды. Соответственно и молекулы адсорбирующихся веществ удобно подразделить на группы в соответствии с особенностями их электронной структуры 1) молекулы группы А, не имеющие локально сосредоточенных на периферии зарядов (благородные газы, алканы, нафтены) 2) молекулы группы В, имеющие на периферии отдельных связей и звеньев сосредоточенный отрицательный заряд (я-связи непредельных и ароматических углеводородов, свободные электронные пары атомов кислорода в эфирах и кетонах и азота в третичных аминах) 3) молекулы группы С, имеющие сосредоточенный на периферии положительный заряд, например Ь1К 4) молекулы группы В, содержащие функциональные группы типа ОН и ЫН, способные к ассоциации с образованием взаимных водородных связей [1, 2]. [c.196]

    По мере того как мы находим все новые типы соединений, способных принимать участие в Н-связи, становится ясно, что это взаимодействие имеет важное значение в обширном разделе современной химии. Поскольку удается обнаружить Н-связь с такими слабыми кислотами, как меркаптаны, тиофенолы и галогензамещенные алканы, и такими слабыми основаниями, как ароматические углеводороды, олефины и тиоэфиры, представляется целесообразным обратить внимание на еще более слабые взаимодействия, свойства которых походят на свойства Н-связи. Один пример такого взаимодействия был только что упомянут в разд. 12.2.1, а именно кристаллическая структура ароматических углеводородов, свидетельствующая о существовании притяжения между протонами ароматических групп С — Ни я-электронами прилежащих молекул. [c.292]

    Клатратными соединениями включения называются соединения, образующиеся в результате обратимого внедрения молекул одного сорта (молекул- го-стей ) в межкристаллическое пространство молекул другого сорта (молекул- хозяев ) без образования химических связей. Всегда можно подобрать условия, способствующие образованию такого типа соединений, и условия выделения включенных молекул. Включение возможно только при том условии, что полость в кристаллах молекул- хозяев соответствует размерам молекул- гостей . Это обеспечивает высокую селективность процесса. Поэтому клатраты начинают играть все большую роль в процессах разделения веществ и получения их в очень чистом виде. Широкое применение находят клатраты в промышленности для выделения нормальных парафинов из нефтяных фракций, разделения ароматических углеводородов, осушки газов, опреснения воды и др. Клатраты используются в химическом анализе и для препаративного получения многих чистых веществ и даже для разделения рацематов. Большое значение клатраты имеют в процессах, происходящих в биологических объектах. [c.5]

    Хотя свойства индивидуальных углеводородов и не являются одинаковыми, они довольно близки у углеводородов одного и того же ряда при небольшом различии молекулярного веса. В связи с этим нефти различают но содержанию фракций, выкипающих при различных температурах, по групповому содержанию парафиновых, нафтеновых и ароматических углеводородов, по содержанию нормальных и изомерных углеводородов, по среднему числу колец в молекуле и др. Поэтому подразделяя нефти согласно той или иной классификации на несколько типов, дающих общую их характеристику, необходимо учитывать, что нефти, относящиеся к одному и тому же типу, не являются идентичными но составу. В каждой, например, парафино-нафтеновой или иной нефти имеются свои отличия по содержанию и соотношению индивидуальных углеводородных и гетероатомных соединений. Ниже приводятся сведения по общей характеристике состава нефтей некоторых нефтегазоносных бассейнов. [c.12]

    Адсорбирующиеся молекулы также целесообразно разбить на группы в соответствии с особенностями их электронного строения, в основном определяющими характер межмолеку-лярного взаимодействия [1, 13—16]. В группу А входят молекулы, способные только к неспецифическому молекулярному взаимодействию. Это молекулы со сферически симметричными электронными оболочками или о-связями (благородные газы, насыщенные углеводороды). В группу В входят молекулы, обладающие звеньями или связями с локально сосредоточенной на периферии электронной плотностью — свободными электронными парами, л-связями (эфиры, кетоны, нитрилы, третичные амины, ненасыщенные и ароматические углеводороды и т. п.). В группу С входят молекулы с периферически сосредоточенным положительным зарядом, с пониженной электронной плотностью в соответствующих звеньях (например, некоторые металлоорганические соединения). Наконец, к группе О относятся молекулы, в которых звенья ранее рассмотренных типов В и С входят в одни и те же функциональные группы, например в группы ОН или МН (вода, спирты, аммиак, первичные и вторичные амины и т. п.). Эти молекулы способны к специфическому взаимодействию не только с молекулами групп В и С, но и друг с другом с образованием взаимных водородных связей. [c.14]


    В неорганической химии, как известно, для многих элементов считается общепринятым существование переменной валентности. В это же время в органической химии обычно принято считать, что в органических соединениях всех типов (будь то парафиновые, этиленовые, ацетиленовые, ароматические углеводороды или их производные) углерод обязательно четырехвалентен. Если же углеродный атом связан не с четырьмя, а только с тремя какими-либо атомами, его четырехвалентность сохраняется путем признания наличия между ним и каким-либо связанным с ним атомом двойной связи. Аналогичным образом,если атом углерода связан только с двумя какими-либо атомами, то с целью сохранения его четырехвалентности допускается наличие при нем одной тройной или двух двойных связей. Тем не меиее и при допущении двойных и тройных связей принцип четырехвалентности углерода не удается провести во всех случаях. Так, в молекуле окиси углерода и в изонитрилах углерод не четырехвалентен, [c.49]

    Более детальное рассмотрение взаимных отношений атомов углерода в молекулах ароматических многоядерных углеводородов требует учета более тонких дополнительных различий между связями, относящимися в классификации, приведенной выше, к одному типу. [c.248]

    П. Представления о типах связей СС и СН в молекулах углеводородов находятся в согласии с экспериментальными данными по межатомным расстояниям, теплотам образования, молекулярным объемам, молекулярным рефракциям, коэффициентам упругости и диамагнитным восприимчивостям (для ароматических углеводородов) углеводородов. [c.314]

    Значения энергий отдельных видов связей приводятся в таблицах. Теоретические расчеты параметра р показали, что он мало зависит от типа молекулы и в среднем имеет значение р=136 кдж1моль для различных углеводородов с сопряженными связями и ароматических соединений. Однако абсолютное значение р зависит от способа его расчета. [c.38]

    В соответствии с этим хроматограммы молекул, относящихся к группам В и В, на аэросилогелях и силикагелях весьма чувствительны к наличию на поверхности кремнезема примесных центров алюминия и бора. Так, из хроматографических колонн с обычным силикагелем, содержащим примесь окиси алюминия, симметричными пиками выходят только углеводороды (особенно насыщенные — молекулы группы А). Ароматические углеводороды, эфиры и кетоны выходят очень медленно и весьма растянутыми пиками [42], а многие амины, пиридин, хинолин и другие сильные основания часто не выходят вовсе, прочно хемосорбируясь на апротонных кислотных центрах на поверхности таких кремнеземов [49]. В случае пористых стекол и других кремнеземов, содержащих бор, роль таких центров играют примесные центры бора [44, 50, 51]. Вместе с тем, в соответствии с рис. 10, гидроксильные группы поверхности чистого кремнезема не столь энергетически активны и довольно однородны. Из рис. 10 и И видно, что гидроксилированная поверхность химически очень чистого аэросилогеля [42, 48] и силохрома С-80 [52] по отношению к различным молекулам группы В ведет себя не как хемосорбент, а лишь как специфический адсорбент П-го типа, образующий с молекулами В только водородные связи разной энергии. Дегидроксилирование чистой поверхности кремнезема, уменьшая ее специфичность, лишь сокращает удерживание таких молекул и мало влияет на удерживание молекул группы А. [c.51]

    A), направленные параллельно оси в , которые слишком малы, чтобы в них могли проникать молекулы ароматических углеводородов. Кроме того, в нишах расположены ионы натрий, замена которых па протоны должна улучшить диффузионные характеристики морденита. При встречной диффузии бензола и кумола движение молекул должно происходить в цилиндрических каналах. 1йзмеренные энергии активации оказались значительно больше, чем ири диффузии углеводородов в жидкой фазе и в цеолитах других типов. Энергия активации диффузии бензола равна 17,5 ккал/моль, т. е. много больше теплоты адсорбции бензола на Н-зеолоне, равной 5,2 ккал/моль . Это объясняется блокировкой цилиндрических каналов небольшим числом молекул углеводорода. прочно адсорбированных в определенных местах. Коэффициенты диффузии для десорбции кумола в бензол уменьшаются нрп увеличении времени насыщения цеолита перед десорбцией. Это уменьшение связано с медленным образованнем ион-радикалов и днизонропилбензола. [c.695]

    Катализатор безнатриевого типа активнее катализатора типа ЦЕОКАР-2 и обладает большей способностью сохранять повышенную активность в длительных экспериментах. Последнее обусловлено меньшим закоксовыванием поверхности катализатора, что связано с отсутствием ионов натрия в решетке. Кроме того, на безнатриевых катализаторах повышение объемной скорости подачи сырья не приводит к снижению выхода изопропилбензола, а на ЦЕОКАР-2 наблюдается его уменьшение. На границе перехода от жидко-к газофазному процессу алкилирования происходит резкое снижение выхода изопропилбензола, что обусловлено сильным торможением процесса сорбированными молекулами ароматических углеводородов, которое четко прослеживается с повышением температуры опыта от 80 до 154° С. В этой области при атмосферном давлении бензол находится в виде паров, а моно- и диизопропилбензолы — в жидкой фазе. В отличие от опытов, проведенных при 40—70° С и 170— 260° С, в температурной области 80—154° С до 80 мин продолжительности опыта в катализате не содержится значительных количеств ди- и триизопропилбензолов, а свыше 80 мин — наблюдается резкое увеличение количества полиалкилбензолов. Такая особенность обусловлена тем, что в указанной области температур моно- и полиизопропилбензолы не вымываются бензолом из пор катализатора, поэтому удерживаемый в порах изопропилбензол алкилируется до полиизопропилбензолов, а последние, по мере увеличения их со держания в слое катализатора (в порах они образуют жидкий слой), фильтруются через него. [c.144]

    Тетраэтилсвинец иногда может способствовать понижению критической степени сжатия и играть роль возбудителя детонации. Такое явление наблюдается, если ТЭС добавляют к циклическим диолефинам, ароматическим производным ацетилена, к некоторым ароматическим соединениям с ненасьщенной боковой цепью, к углеводородам типа индена и фульвена, причем, как правило, в молекулах углеводородов имеются сопряягениые двойные связи. Примером таких углеводородов может служить циклопентадиеи вообш,е такой эффект действия антидетонатора наблюдается у тех углеводородов, которые сами являются замедлителями окисления предполагается, что нри их окислении образуется большое число очень коротких цепей [230]. Эти соединения обладают высокой чувствительностью к изменению условий работы двигателя. Ловелл [216], Цанг и Ловелл [231] достаточно полно описали действие ТЭС на индивидуальные углеводороды. [c.422]

    В группу В входят полярные молекулы, включающие фрагменты с неподеленными электронными парами или я-связями. Это, например, квадрупольные молекулы азота, ненасыщенные и ароматические углеводороды, а также молекулы с такими ди-польными функциональными группами, как, например, кислород в эфирах и кетонах или азот в третичных аминах и нитрилах. Полярные связи или функциональные группы должны быть расположены в периферических частях таких молекул, т. е. быть доступными периферическим полярным группам других взаимодействующих с ними молекул. Молекулы группы В способны проявлять наряду с универсальным неспецифическим также и более специфическое направленное межмолекулярное взаимодействие. Специфическое взаимодействие осуществляется, однако, только в том случае, если другой партнер, вступающий в межмолекулярное взаимодействие с молекулами группы В, имеет положительный заряд, локализованный на периферическом фрагменте малого радиуса (это может быть, например, в той или иной степени прбтонизи-рованный атом водорода в группах ОН кислотного типа или другой электроноакцепторный центр). Поэтому межмолекулярное взаимодействие молекул группы В с молекулами группы А остается неспецифическим межмолекулярное же взаимодействие молекул группы В между собой, помимо универсального неспецифического, может включать значительный вклад специфических взаимодействий, связанных с уже указанными особенностями распределения электронной плотности. Сюда относится, например, дииоль-диполь-ное притяжение молекул кетонов или нитрилов, [c.12]

    Качественно новое явление при рассмотрении молекул состоит в использовании гибридных орбиталей. Наиболее известными являются гибридные зр -, зр -- и 5р-орбитали атома углерода, объясняющие причины многообра-зия органических соединений. Ввиду существования этих типов гибридизации в органических молекулах встречаются преимущественно два типа связи — а-связь и я-связь. Чистая а-связь встречается, например, в насыщенных углеводородах, в которых атом углерода образует гибридные р -орбитали. В ароматических углеводородах вследствие зр -гибридизации наряду с а-связью, образующей остов молекулы, имеется также еще к-связь. В случае а-связи электронное облако располагается симметрично вокруг линии, проведенной через атомные ядра. В случае п-связи электронное облако располагается симметрично по обе стороны от плоскости, проходящей через атомные ядра. В соединениях с гетероатомами к этим двум состояниям электронов добавляются еще одиночные электронные пары гетеро-атома, находящиеся на несвязывающих п-орбиталях. [c.177]

    Наиболее успешно используется этот метод для исследования алюмосиликатных катализаторов крекинга и окисных катализаторов в связи с возможностью возникновения на них в процессе хемосорбции заряженных форм адсорбированных веществ. Исследования спектров поглощения адсорбированных молекулярных ионов ароматических аминов и ароматических углеводородов с конденсированными ядрами показали присутствие на поверхности алюмосиликатных катализаторов сильных кислотных центров двух типов электроноакцепторных (льюисовских) и протонодонорных (брен-стедовских). При адсорбции молекул на кислотных центрах образуются молекулярные ионы в результате контакта молекул с поверхностью при комнатной температуре. При этом возникали молекулярные ионы двух типов МН+ — в результате присоединения к молекуле поверхностного протона (бренстедовские центры), и М+ — при отрыве одного электрона от молекул (льюисовские центры). Появлялась возможность устанавливать не только заряженные формы адсорбированных молекул, но и распределение двух типов активных центров на поверхности. [c.180]

    Предполагалась возможность образования простых связей сера—сера и азот — азот, а также кратных связей сера—азот. В действительности, как показали последующие расчеты по методу молекулярных орбиталей, ни одна из них не реализуется. Необычная геометрическая структура привела некоторых авторов к предположению, что в эюй молекуле определяющую роль могут играть вышележащие орбитали / -типа. Впоследствии расчеты убедительно показали, что / -орбитали атома серы играют незначительную роль в формировании электронной структуры Равенство расстояний сера—азот в цикле 84 напоминало химию ароматических углеводородов, й поэтому совсем не удивительно, что высказано предположение об электронной структуре с делокализацией электронов в цикле. Но это также оказалось неверным Теперь читатель, надеемся, начинает представлять себе трудности, существующие в этой области. Наша классическая теория валентности, по-видимому, оказывается неадекватной, когда применяется к бинарным системам, образованным азотом и серой (по крайней мере для тетранитрида тетрасеры). Каким именно является истинное описание электронной структуры 84 N4  [c.169]

    Большой объем теоретических работ был посвящен изучению механизма превращения парафиновых углеводородов в ароматические. При выяснении механизма этой реакции необходимо было учитывать накопленные экспериментальные данные. Парафиновые углеводороды ароматизируются в значительно меньшей стенени, чем соответствующие олефины, которые в свою очередь труднее поддаются ароматизации, чем соответствующие шестичленные нафтены наиболее легко протекает ароматизация соответствующих цпклоолефинов. Кроме того, в пределах каждого гомологического ряда легкость ароматизации возрастает с увеличением числа углеродных атомов в молекуле. Разветвление цепей оказывает неодинаковое влияние, т. е. может как затруднять, так и облегчать протекание ароматизации. При попытках ароматизировать олефиновые углеводороды сильное влияние на глубину превращения оказывает положение двойной связи. Эти экспериментальные данные были получены [29 1 в опытах с применением окиснохромового катализатора нри 455°, атмосферном давлении и весовой скорости около 0,22 час - Фактические результаты этих опытов приведены в табл. 4. Приводимые в табл. 4 цифры отражают фактическое образование ароматическ11Х углеводородов, но не характеризуют типа ароматических углеводородов, получаемых из индивидуальных исходных углеводородов по-видимому, из одного и того же сырья могут образоваться многочисленные углеводороды. [c.207]

    Необходимо указать на существование соединений и других типов. В. Брэдли показал, что полярные молекулы гликолей, поли-гликолей и полигликолевых эфиров интенсивно сорбируются в межпакетных промежутках монтмориллонита, вытесняя из них воду. Иллюстрируя значение полярных связей, Д. Мак-Эван [26] приводит большой список органических соединений (спиртов, в том числе многоатомных, эфиров, ароматических углеводородов и др.), адсорбирующихся на монтмориллоните и галлуазите с вытеснением ранее адсорбированных неорганических катионов. Этими авторами было показано наличие водородных связей 81—О—. . . —Н—С и энергии поглощения органических диполей, значительно большей, чем воды. С этим согласуются ИК-спектроскопические исследования, обнаружившие, что дейтерировапный метанол, пропиловый, третичный бутиловый и аллиловый спирты, адсорбирующиеся на монтмориллоните или вермикулите, испытывают возмущение со стороны кислого [c.70]

    Шааршмидт усматривает роль хлористого алюминия, а также Fe lg в активировании ароматического углеводорода и в одновременном ослаблении связей галоидоангидрида или галоидалкила. По нему, AI I3 проявляет активность побочных валентностей углеводорода, причем одновременно ставшие активными главные валентности углеводорода присоединяют молекулу галоидоангидрида, или галоидалкила (RX). Первичный комплекс оказывается построенным по типу [c.421]

    Старое разделение адсорбентов и молекул па неполярные и полярные не отражает различий в локальном распределении заряда на периферии. Неполярные молекулы с л-связями адсорбируются специфически качественно так же, как и полярные со свободными электронными парами. Характер и расположение полярных функциональных групп, положительных и отрицательных ионов на поверхности полярных адсорбентов по-разному влияет на молекулярную адсорбцию специфические адсорбенты второго типа сильно и специфически адсорбируют (кроме полярных молекул групп В ж D) неполярные молекулы непредельных и ар< матиче-ских углеводородов, а специфические адсорбенты третьего типа специфически не адсорбируют ароматические углеводороды, но сильно и специфически адсорбируют молекулы групп D (см. стр. 463). Для систематизации этих фактов полезна предложенная мною классификация. Она успешно используется в работах Баррера, Эверетта, Беленького (см. ссылкп [6—8] в нашей статье на стр. 148), в докладе И. Е. Неймарка (стр. 151) и др. [c.205]

    Различные типы поверхностных форм, возникающих при адсорбции углеводородов, обусловлены, по-видимому, разной энергией переноса заряда, определяющей прочность связи комплексов с поверхностью катализаторов при частичном или полном переносе электрона от донора к акцептору. Поскольку углеводороды на поверхности различных катализаторов окисления, как правило, являются донорами электронов (по работе выхода электрона), то, сопоставляя ионизационные потенциалы молекул и свободных радикалов, можно оценить реакционную опособность поверхностных комплексов. Известно, что ионизационные потенциалы возрастают в ряду ароматические углеводороды< олефины<парафияы. В одном же гомологическом ряду с увеличением числа атомов С в молекуле углеводорода ионязациоиный потенциал уменьшается. [c.287]

    Смещение полосы свободных ОН-грунп окиси кремния при адсорбции ароматических углеводородов меньше, чем при адсорбции кислород- и азотсодержащих соединений, но в то же время значительно превышает сдвиг этой полосы в присутствии насыщенных углеводородов. Поскольку Ау растет с увеличением плотности я-электронов в ароматических молекулах, было высказано предположение, что гидроксильные группы взаимодействуют с я-электронами ароматических молекул, образуя с ними связь типа водородной [26]. [c.126]

    Эберли [59] измерил скорость десорбции нескольких углеводородов из глубоко деалюминированного морденита, в котором соотношение 810г/А120з равно 93. На рис. 7-18 показана полученная в этой работе зависимость доли оставшегося в цеолите сорбата от длительности десорбции. Различия в скоростях десорбции, по-видимому, связаны только с молекулярным весом углеводорода и не зависят от типа связей в молекулах. Например, н-гексан и бензол десорбируются с одинаковой скоростью. С увеличением числа атомов углерода десорбция замедляется, но толуол и н-гептан десорбируются с практически одинаковой скоростью. В этом отношении Н-морденит сильно отличается от силикагеля и других адсорбентов, на которых ароматические молекулы обычно удерживаются значительно прочнее парафинов. [c.495]

    Гомологический ряд, в котором находится данная характеристическая группа ионов, определяет степень водородной ненасыщенности соответствующего типа соединений. Обычно хорошо выраженные на общем фоне характеристические группы ионов образуются в результате наиболее вероятных процессов распада, чаще всего на первой стадии цепи последовательных распадов. Поэтому формулы соответствующих ионов довольно просто связаны с эмпирической формулой исходной молекулы. Например, для алпциклических, ароматических углеводородов и гетероатомных соединений наиболее вероятным процессом распада является отщепление алкильного радикала с образованием ионов типа (М—R)" . Степень водородной ненасыщенности этих ионов х — I в формуле H2ii-i -i) на единицу меньше степени ненасыщенности исходных молекул [х в формуле С Н [c.68]

    Выделение и характеристика типов полярных соединений в остатках 675°С проведены МсКау с сотр. [54]. Остатки четырех нефтей разделены на 5 фракций кислотные, основные, нейтральные азотистые соединения, насыщенные и ароматические углеводороды. Преобладающими в остатках 675°С являются первые три типа соединений, которые были подвергнуты дальнейшему разделению к анализу. Методы анализа в общем те же, что описаны в [36, 37]. Отмечены причины, ограничивающие точность ИК-анализа, и прежде всего межмолекулярная ассоциация (П-связь), которая уменьшает интенсивность поглощения групп О—Н и N—П и дает заниженные результаты. Исправить положение помогает разбавление растворов и использование кювет большо1г толщины. Второй источник ошибок — в определении средней молекулярной массы фракций. В [54] она принята равной 900. Наконец, большая ошибка (до 25%) может возникнуть, если не зачитывать возможность присутствия в остатках молекул с более чем одним гетероатомом. Например, если в молекуле — два атома азота в пиррольпых группах, то в ИКС отразится поглощение обеих групп, и расчет покажет наличие двух молекул карбазола вместо одной. В целом трудно определить размер погрешности, вносимой в расчет би- или полифунк-циональными молекулами, так как известно только количество, а не расиределение гетероатомов в остатках. Однако ошибка эта существенна, поскольку и элементный анализ, и данные по молекулярным массам показывают, что скорее всего в каждой молекуле более одного гетероатома. Количественные данные по содержанию азотистых оснований были получены потенциометрическим титрованием. ИКС здесь оказалась бессильной, поскольку не всегда поглощение сильных оснований и нетитруемых соединений проявлялось на спектре. ИКС показала, что типы кислых и основных соединений в остатках те же, что и в ранее изученных дистиллятах [36, 37]. Наиболее трудной для разделения и анализа оказалась фракция нейтральных азотистых соединений. Как нерастворимость ее в большинстве растворителей, так и высокие молекулярные массы (1500—3500) показывают, что молекулы сильно ассоциированы и (или) что эта фракция содержит наиболее высокомолекулярные соединения нефти. Б ИКС преобладает поглощение пиррольных групп N—Н кар- [c.35]

    На основании полученных данных в качестве эталона для оиределення криоскопическим методом молекулярноситовых свойств цеолитов типа X можно рекомендовать и эту узкую по размерам молекул (>8<10 А) фракцию высококипящих ароматических углеводородов, которую можно выделять адсорбционным мето-до.м из фенольных экстрактов от очистки масел, как это будет показано, нпже. В связи с этим в ТУ на цеолиты можно было бы внести соответствующие изменения. [c.39]

    В масс-спектрах ароматических гидроксильных соединений пики молекулярных ионов обладают еще большей интенсивностью. В спектре фенола пик молекулярных ионов максимален. Пик, соответствующий ионам с массой М — 1), мал. Очевидно, разрыв связи О—Н, находящейся в Р-положении к кольцу, происходит с меньшей вероятностью из-за наличия кислорода. В масс-спектре наблюдаются интенсивные пики ионов с массами 65 и 66, образованные при разрыве кольца. Как было установлено измерением масс, эти ионы отвечают формуле СО и СНО. Состав ионов с массой 65 и 66 может быть получен также на основании изучения дейтерированного фенола и тиофенола, как это было сделано Моминьи [1426]. В масс-спектрах этих соединений были соответственно обнаружены пики с массами 65, 66, 67 и 65, 66. В масс-спектре анилина также имеются пики сравнимой интенсивности, соответствующие ионам с массами 65 и 66, которые образовались благодаря отрыву соответствующих соединений азота H N и H2 N. Аналогичные осколочные ионы наблюдаются также в спектре нафтолов [190]. В спектрах крезолов имеется интенсивный пик молекулярных ионов, и даже больший пик, соответствующий ионам (М — 1) образования последнего следовало ожидать по аналогии с толуолом. В данном случае от исходной молекулы легко происходит отрыв СНО, но не СО. Наличие перегруппировочных ионов с массой 77 указывает на аро матический характер соединения. Масс-спектры соединений типа 2-фенилпро панола и 2-фенилэтанола близки к спектрам ароматических углеводородов В обоих случаях диссоциация [751] происходит с разрывом связи, находя щейся в Р-положении к кольцу и атому кислорода, а также с отрывом спирто вой боковой цепи и образованием соответствующих ионов с массами 91 и 105 Диссоциация с отрывом метильного радикала из 2-фенилпропанола, соответ ствующая разрыву другой р-связи по отношению к кольцу, осуществляется с малой вероятностью. Образуются перегруппировочные ионы с массами 92 и 106. Изучение спектров соответствующих дейтерированных соединений, в которых дейтерий введен в гидроксильную группу [751], показало, что в значительной степени эти ионы образованы с миграцией водорода гидроксильной группы. В общем случае ароматические и нафтеновые гидроксильные производные идентифицируются легко, частично на основании интенсивных пиков молекулярных ионов. Спектры алифатических спиртов труднее поддаются расшифровке. Некоторые факторы, затрудняющие идентификацию, будут рассмотрены ниже. [c.359]

    Данные табл. 8 показывают, что склонность ароматических углеводородов к конденсации связана с их строением совершенно так же, как способность этих углеводородов образовывать кокс. В случае незамещенных ароматических углеводородов легче всего образуют продукты конденсации линейно конденсированные много-ядерные углеводороды—ацены. еры-Конденсированные и ангулярно конденсированные (фены) углеводороды весьма термически устойчивы, а углеводороды со смешанным типом конденсации бензольных колец обладают промежуточной между аценами и фенами склонностью к образованию продуктов конденсации. Алкилирование ароматических колец сильно снижает термическую устойчивость углеводорода. Нужно отметить, что замещение ароматического водорода радикалами крупнее метильного снижает термическую устойчивость в значительно большей степени, так как связь АгС — С приблизительно на 1 2 ккал1моль слабее связи АгС — Н. Гетероциклические аналоги могут иметь и большие, и меньшие термическую стойкость и склонность к образованию продуктов конденсации, чем соответствующие ароматические углеводороды. Повышение или понижение устойчивости ароматических углеводородов к реакции конденсации при замене углеводородного атома в молекуле на гете- [c.24]

    Подавление коксообразования добавками высокоароматизованных продуктов пытались объяснить по-разному. Высказывалось предположение [49], что алкилароматические углеводороды обрывают цепную реакцию образования кокса в результате образования при реакциях радикалов с их молекулами малоактивных радикалов бензильного типа. Однако в нефтепродуктах всегда имеется много связей типа АгСНг—И, и добавление к сырью алкилароматических углеводородов в этом отношении ничего не меняет. Предполагалось [121], что ароматические углеводороды, прочно адсорбируясь на поверхности печных труб и вследствие термической устойчивости не разлагаясь, препятствуют распаду коксообразующих веществ. [c.135]

    Сила адсорбции зависит от природы адсорбента и функциональных групп, находящихся в молекуле образца. Для разделения нефтей и нефтепродуктов используют в основном полярные адсорбенты, такие, как силикагель и оксид алюминия. Широкие пределы сил межмолекулярных взаимодействий различных функциональных гр тш е поверхностью полярш.и. адсорбентов приводят к чрезвычайно широкой области энергии адсорбции для различных типов молекул (табл. 1). Например, алкильные группы адсорбируются слабо, так как взаимодействие их с поверхностью адсорбента осуществляется только дисперсионными сипами [1, 8]. Спирты адсорбируются гораздо сильнее за счет индукционных сил и водородных связей [9]. Обычно различные классы соединений десорбируются с полярньгх адсорбентов в следующем порядке [3, 10] насыщенные углеводороды (небольшой. % ) < олеф1Шы < ароматические углеводороды органические галогениды< сульфиды < простьге эфиры < сложные эфиры альдегиды кетоны < спирты < амины < сульфоны < сульфок сиды < амида < карбоновые кислоты (большой к ). [c.13]


Смотреть страницы где упоминается термин Типы связей СС к СН в молекулах ароматических углеводородов: [c.250]    [c.328]    [c.88]    [c.115]    [c.11]    [c.42]    [c.356]    [c.293]    [c.615]    [c.215]    [c.105]    [c.12]    [c.196]   
Смотреть главы в:

Химическое строение углеводородов и закономерности в их физико-химических свойствах -> Типы связей СС к СН в молекулах ароматических углеводородов




ПОИСК





Смотрите так же термины и статьи:

Ароматические молекулы

Молекулы связь

Связь ароматическая

типы связ



© 2025 chem21.info Реклама на сайте