Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деструкция полимеров разрыв цепи по закону случая

    Термическая деструкция полимеров обычно представляет собой свободнорадикальный процесс. Разрыв цепи может происходить либо по закону случая, либо по слабым местам (например, вблизи разветвлений или структурных нерегулярностей), либо на концах цепи. Термическая деструкция ряда полимеров (например, полиэтилена, полипропилена, эфиров полиакриловой кислоты, полиакрилонитрила, полибутадиена) не приводит к образованию мономера в этих случаях протекает собственно деструкция. Если основным продуктом деструкции полимера является мономер (например, по- [c.246]


    Существует два основных типа распада полимерной цепи. Это деполимеризация — процесс, обратный полимеризации — и распад полимерной цепи по закону случая, когда разрыв любой связи в полимерной цепи равновероятен. К основным видам такого распада — деструкции полимеров — относятся термическая и термоокислительная деструкции, фотодеструкция, радиационная деструкция, гидролитическая деструкция, механодеструкция, биологическая деструкция, озонное разрушение полимеров и т. п. [c.108]

    ДЕСТРУКЦИЯ ПОЛИМЕРОВ (от лат. destru tio-разрушение), общее назв. процессов, протекающих с разрывом хим. связей в макромолекулах и приводящих к уменьшению степени полимеризации или мол. массы полимера. В зависимости от места разрыва хим. связей различают деструкцию (Д.) в основной и боковьк цепях полимера. Д. в основной цепи может протекать по закону случая (равновероятный разрыв хим. связи в любом месте микромолекулы) и как деполимеризация (отщепление мономерных звеньев с концов полимерной цепи). При Д. по закону случая среднечисловая мол. масса связана с числом разрывов цепи JV соотношением  [c.23]

    Гидролитическая деструкция целлюлозы в гомогенных средах протекает по закону случая. Статистика и кинетика этого процесса могут быть изучены при помощи методов, аналогичных тем, которые используются при теоретическом анализе реакции поликонденсации. Рассмотрим полимер с бесконечно большим числом равноценных валентных связей в основной цепи. Если вероятность разрыва любой связи равна р, то вероятность того, что разрыв не произойдет, будет 1 — р. При деструкции до образования х-мера необходимо, чтобы две связи разорвались (вероятность р ) и х—1 связей оставались без изменения [вероятность (1—рУ - [c.624]

    Основные механизмы термической деструкции полимеров часто имеют первый порядок по со. В этом случае для нахождения константы скорости используют метод экстраполяции скорости разложения к нулевой степени разложения [11, 12]. Такая экстраполяция предполагает линейную зависимость d(o/dx от (й, что, как следует из анализа различных механизмов деструкции, наблюдается далеко не всегда. Теоретически строго не обоснована экстраполяция для деструкции полимерной цепи по закону случая, однако практика показывает, что значения Е, вычисленные таким образом, близки к истинным. Это связано с тем, что при больших степенях разложения почти каждый разрыв связи ведет к улетучиванию фрагментов цепи и соответственно приблизительно к первому порядку реакции по остаточной массе полимера. [c.14]


    При действии излучений высокой энергии на полимер происходит разрыв связей основной цепи, отрыв замещающих групп, сшивание и др В отличие от термодеструкции радиолнз не вызывает деголимеризацию полимера и не является цепным процессом. Радиационная деструкция всегда протекает по закону случая. [c.213]

    Термическая деструкция полиэтилена протекает по механизму, совершенно противоположному механизму разложения двух ранее рассмотренных полимеров. Однако наличие разветвленности в полимере изменяет механизм, по-видимому, вследствие увеличения отношения внутримолекулярной передачи к межмолекулярной [87]. При пиролизе любого полиэтилена выделяется не более 1% мономера. Молекулярные веса полиэтиленов резко уменьшаются [48]. Методом инфракрасной спектроскопии было показано, что на начальных стадиях деструкции разветвленного полиэтилена винильные группы образуются медленнее, чем двойные связи других типов. Это указывает на преимущественный разрыв цепей по местам разветвлений или вблизи этих мест. Ход изменения среднечисловой СП для линейного полиэтилена (полиметилен, полученный полимеризацией диазометана под действием эфирата трехфтористого бора) представлен кривой В на рис. 102. Эта кривая показывает быстроту падения СП при разрывах, протекающих по закону случая. При конверсии в пределах 2% СП уменьшается в 1000 раз. Кривые скоростей для сильно разветвленного полиэтилена показаны на рис. 105. Отсутствие максимума и форма кривых указывают на реакцию с большой длиной зипа с другой стороны, кривые линейных полимеров, имеющие максимумы, хорошо согласуются с теорией деструкции по закону случая. На рис. 103 приведена скорость выделения летучих веществ из линейного полимера с молекулярным весом около 5 000 000. Полагая L = 72, из величин максимумов можно непосредственно получить константы скоростей деструкции по закону случая. Были вычислены теоретические кривые, имеющие то же значение максимума оказалось, что они хорошо согласуются с экспериментальными данными. Для константы скорости получено следующее выражение  [c.183]

    Еще в ранних работах было установлено, что полиметилметакрилат (ПММА) под действием ионизирующих излучений деструктируется, причем разрыв связей в макромолекуле происходит по закону случая [181, 182, 190—194]. Анализ данных по зависимости снижения молекулярного веса полимера от дозы излучения показал, что при облучении ПММА у-лучами Со величина поглощенной энергии в расчете на один акт разрыва цепи составляет 61 эв [185] и 59 эв [195]. Аналогичное значение д = 59 эв было получено из данных по облучению ПММА электронами энергии 1 Мэе при температуре, близкой к комнатной [175]. Значения в пределах 50—81 эв были получены для процесса облучения у-лучами образцов ПММА, предварительно подвергнутых нагреванию при 100° в вакууме [196]. В одном из последних исследований было найдено, что при облучении ПММА у-лучами в вакууме д = = 83 эв [188]. Имеются данные, что а-частицы полония малоэффективны в отношении радиационной деструкции ПММА, д в этом случае составляет 263 эв [197]. Этот факт был объяснен одновременным разрывом нескольких связей в сравнительно коротком отрезке молекулярной цепи полимера вследствие высокой плотности ионизации в треке а-час-тицы. При облучении ПММА при комнатной температуре электронами энергии 2 Мэе и у-лучами для д были получены значения 55 и 71 э соответственно [197]. Таким образом, экспериментальные данные показывают, что действие на ПММА быстрых электронов и у-лучвй при комнатной температуре в вакууме сопровождается разрывом одной связи в основной цепи при поглощении приблизительно 60 эв энергии излучения. Эта величина энергии разрыва макромолекулы ПММА была использована при количественном исследовании структуры сшитого полиметилметакрилата методом радиационной деструкции [198]. [c.101]

    Камероном и Кейном было установлено [2], что в процессе деструкции ПМА происходит уменьшение молекулярной массы на ранних стадиях распада. Этими авторами было показано [3], что число концевых групп на единицу массы ПМА быстро увеличивается из-за разрывов цепи, в то время как скорость образования летучих на единицу массы полимера не меняется и даже слегка уменьшается на более поздних стадиях распада. Это говорит о том, что инициирование на конце цепи в ПМА не играет существенной роли. С учетом изложенного И ввиду хорошо известной устойчивости метиловых эфиров [22], Камерон и Кейн приходят к выводу, что разрыв цепи по закону случая является наиболее вероятным в стадии инициирования термораспада ПА. [c.6]

    Для термической деструкции полимеров характерны два типа реакций процессы распада макроцепи, идущие по закону случая, и процессы распада цепи путем деполимеризации с отщеплением мономера. Процессы деструкции по закону случая могут идти как нецепным путем (процессы, обратные реакции полпконденсации), так и цепным — деполимериза-цг.и. Известей радикальио-цепной механизм термической деструкции аддицнонных полимеров через срединные радикалы (неспаренный электрон ие па концевом фрагменте макроцепи). Например, в случае полиуглеводородов разрыв цепи может происходить в результате межмолекулярной передачи цепи [c.32]


    Радиационная деструкция полимеров протекает под влиянием излучений высокой энергии (рентгеновские лучи, уизлучение, электроны, протоны, а-частицы, нейтроны). При действии излучений высокой энергии на полимер происходит разрыв связей основной цепи макромолекулы или отрыв замещающих групп. Про-десс проходит по закону случая. В отличие от термодеструкции эадиолиз не вызывает деполимеризацию полимера и не является депным процессом. Отрыв каждого атома (или группы) или ка- кдый разрыв связи в основной цепи сопровождается новым ак-гом ионизации или возбуждения. [c.219]

    Следствием радиационно-химической деструкции является раз-р1лв главных цепей макромолекул, происходящий по закону случая. Разрыв главных цепей приводит к иеп]5ерьшному снижению молекулярного веса полимера вплоть до полной его деструкции до мономера. [c.20]


Смотреть страницы где упоминается термин Деструкция полимеров разрыв цепи по закону случая: [c.463]    [c.64]    [c.19]    [c.19]    [c.64]    [c.64]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.196 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Деструкция полимеров

Деструкция полимеров по закону случая



© 2025 chem21.info Реклама на сайте