Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрушение озоном резины

    Опыт 50. Разрушение озоном резины [c.36]

    Разрушение озоном резины [c.119]

    Озонное разрушение каучуков, резин и пластиков [c.109]

    Влияние жидкой химически активной среды на процесс усталостного разрушения в первую очередь должно проявляться в ускорении образования первоначального дефекта. При развитии этих дефектов в субмикротрещины и магистральные разрушающие трещины определяющим кинетическим фактором разрушения может быть поверхностная или объемная диффузия молекул среды к вершине растущей трещины. Это наглядно показано Зуевым для случая разрушения напряженных резин в атмосфере озона [11, с. 163] и нами для разрушения полимеров в жидкостях. [c.185]


    Механизм. Сущность О. с. заключается в резком ускорении разрушения напряженных резин, обусловленном присоединением озона по кратным связям макромолекул каучука  [c.203]

    Помимо обычных метеорологических параметров и содержания в воздухе индустриальных газов необходимо определять температуру образцов, сильно отличающуюся при воздействии прямых солнечных лучей от температуры воздуха и зависящую от цвета образца и материала подложки концентрацию озона, являющегося основным фактором разрушения деформированных резин. Наилучшим методом определения концентрации атмосферного озона, показания которого не зависят от присутствия N02 и 80 2, всегда имеющихся в атмосферном воздухе (особенно в городах), является определение поглощения в ультрафиолетовой области спектра. [c.214]

    Скорость поглощения озона нерастянутым образцом постепенно уменьшается (рис. 1.9). Несравненно более опасным является взаимодействие озона с растянутыми резинами. Под действием растягивающих напряжений (без озона) происходит разрушение материалов, но в случае напряжений, соответствующих эксплуатационным, для разрушения большинства резиновых изделий требуется достаточно длительное время. Одновременное воздействие на материал агрессивных сред, сопровождающееся деструкцией макромолекул, резко ускоряет разрушение. Озон по отношению к резинам из ненасыщенных каучуков является именно такой средой. В ничтожно малых концентрациях, ха- [c.27]

    Таким образом, скорость разрушения напряженных резин при небольших напряжениях, характерных для эксплуатации, в первую очередь определяется возможностью химического взаимодействия полимера с озоном. Кроме этого, однако, на сопротивление озонному растрескиванию оказывает влияние физическая структура полимера — способность к молекулярной ориентации и подвижность макромолекул. В основу классификации резин по их сопротивлению растрескиванию в среде озона положены максимальные концентрации озона, которые при 20%-ной статической деформации растяжения резина выдерживает без растрескивания при 25+3 °С в течение определенного времени. [c.30]

    В то же время в колоннах для получения криптонового концентрата, очевидно, может накопиться сравнительно большое количество озона. Имеются сведения о том, что на одном из металлургических комбинатов при определении содержания ацетилена в жидкости, сливаемой из конденсатора колонны для получения криптонового концентрата, обнаружили озон в количестве до 3— 4 см /л жидкости. В этих условиях часто наблюдается растрескивание резиновых шлангов, которые используют при проведении анализов жидкого кислорода на ацетилен. Характер разрушений шлангов указывает на типичное растрескивание резины в присутствии озона. [c.26]


    Наиб, подвержены разрушению изделия из деформированных (растянутых) резин на основе полиизопрена, полибутадиена и их сополимеров. О. резин характеризуется временем до появления трещин или до полного разрушения образца при разл. концентрациях озона с послед, экстраполяцией на его концентрацию в атмосфере [(2-6)-10 %] м.б. также определена визуально по числу трещин и по их глубине (обычно через 20-40 сут). [c.335]

Рис. 6.5. Влияние содержания галогенированного бутилкаучука в смеси с натуральным каучуком на показатели озоностойкости резин [концентрация озона 0,2% (об.), удлинение 50%] по образованию видимых трещин (1), разрушению образца (2) и на относительную скорость диффузии воздуха (3), а также на адгезию (373 К) к резине на основе смеси 50% натурального каучука и 50% бутадиенстирольного каучука (4) 1,2 - для хлорбутилкаучука Рис. 6.5. <a href="/info/403306">Влияние содержания</a> <a href="/info/1334318">галогенированного бутилкаучука</a> в смеси с <a href="/info/540">натуральным каучуком</a> на показатели <a href="/info/455661">озоностойкости резин</a> [<a href="/info/1335503">концентрация озона</a> 0,2% (об.), удлинение 50%] по образованию видимых трещин (1), <a href="/info/931792">разрушению образца</a> (2) и на <a href="/info/606728">относительную скорость диффузии</a> воздуха (3), а также на адгезию (373 К) к резине на основе смеси 50% <a href="/info/540">натурального каучука</a> и 50% <a href="/info/137916">бутадиенстирольного каучука</a> (4) 1,2 - для хлорбутилкаучука
    Если резина подвергается одновременно действию механических нагрузок, кислорода и озона воздуха, то"такой процесс старения называют утомлением. Утомление оценивают по числу циклов многократных деформаций (растяжения, изгиба, сжатия), выдерживаемых резинами до разрушения. В целях повышения сопротивления резин утомлению в их состав вводят противоутомители диафен ФП, хинол ЭД и 1,2-меркаптобензимидазол. [c.56]

    В последнее время показано, что явление озонного растрескивания резин не уникально. Разрушение такого же типа (рис. 147) [c.261]

    Вторая особенность, заключающаяся в меньшей скорости взаимодействия агрессивной среды с недеформированной резиной, чем с деформированной, хорошо известна для случая действия озона и подтверждается электронно-микроскопическими наблю-дениями , а также наблюдается при действии соляной кислоты на резины из СКС-30-1. Различие в скорости разрушения наглядно видно из рис. 168, на котором кривые для недеформированных резин расположены ниже, чем для деформированных несмотря на то, что поверхность нерастянутых образцов была в 5 раз больше, чем растянутых.  [c.300]

    Третья особенность кинетики разрушения резин состоит в возможности влияния напряжения на направление химических реакций. Так, закономерности роста равновесного модуля недеформированной пленки очищенного СКБ при действии озона сви- [c.300]

    Для того чтобы окончательно выяснить, какая связь существует между количеством трещин и явлением критической деформации, был поставлен следующий опыт . Проводилось озонирование при разных деформациях трех типов образцов резин из НК. Образцы первого типа имели один прокол в середине, остальная поверхность покрывалась пленкой полиизобутилена или смазывалась силиконовой смазкой для предохранения от воздействия озона. На образцах второго типа имелось одинаково большое количество трещин, образовавшихся при предварительном нх озонировании в условиях одинаковой деформации. Образцы третьего типа (без трещин) использовались как контрольные. Если бы объяснения Ньютона критической деформации были правильными, последняя должна была бы наблюдаться только для контрольных образцов, а в двух других случаях скорость разрушения монотонно увеличивалась бы с ростом деформации. Опыт опровергает это. Критическая деформация наблюдается во всех случаях, причем если полученные данные по зависимости - от е нанести на один график, отложив по оси ординат не а т/т -100, где т —время до разрыва при критической деформации, то все точки для образцов второго и третьего типов в области до [c.321]

    Сравнение значений для разных полимеров показывает, что увеличение химической стойкости и уменьшение долговечности приводят к увеличению Рс, так как при этом Д уменьшается, и наоборот, противоположное изменение этих параметров вызывает уменьшение Рс- В качестве примера можно рассмотреть поведение в соляной кислоте резин из СКС-ЗЭ-1, одна из которых вулканизована с помощью MgO, а другая с помощью серы (см. рис. 198). У серного вулканизата, кислотостойкость которого больше, чем вулканизованного MgO, а прочность меньше, разрушение резко ускоряется при концентрации агрессивного агента в 10 раз большей, чем у более прочного, но менее кислотостойкого. При изменении механической прочности и химической стойкости в одну сторону( например, при их одновременном увеличении) Рс в зависимости от их соотношения может сдвигаться в разных направлениях. Так, при сравнении относительной ползучести разных резин в озоне найдено, что у резины из наирита в Ю рзз больше, чем у СКС-30-1 (см. рис. 198). Это объясняется тем, что разница в химической стойкости между наиритом и СКС-30-1 велика, в то время как по прочностным свойствам резины из СКС-30-1 и из наирита отличаются мало. [c.342]

    Наиболее характерными примерами сильного влияния напряжения на поведение эластомеров являются катастрофиче-С7<ое разрушение растянутых резин из ненасыщенных каучуков под действием следов озона при практически неизменных их свойствах в результате контакта с ним ненапряженных резин [5, 7] и резкий сдвиг температуры хрупкости резин в сторону уменьшения при растяжении и некоторое ее повышение при сжатии по сравнению с недеформированными образцами. Отсюда очевидно, что характер напряжения также играет существенную роль. По действию агрессивных жидкостей на механические свойства предложена различная классификация резин по их стойкости при растяжении, сжатии, многократных деформациях, трении по гладкой поверхности [9]. Изменение механических свойств, однако, является конечным результатом влияния напряжений на направление химических реакций, в том числе иа соотношение процессов деструкции и структурирования,-на диффузию ингредиентов [10], что проявляется, например, в различной скорости старения разных участков резин, находящихся в сложно-напряженном состоянии [И], на разрушение и образование физических структур, в частности на развитие процессов кристаллизации [12]. [c.9]


    Скорость процесса в случае напряженной резины больше, чем для ненапряженной. Это подтверждается следующими примерами. Взаимодействие атмосферного озона с напряженными резинами вызывает один из наиболее опасных видов разрушения — озонное растрескивание, в то время как образование трещин в ненапряженной резине практически не происходит,. Обнаружить воздействие озона на ненапряженную резину удается только с помощью электронной микроскопии. Разные скорости процесса наблюдались также при взаимодействии соляной кислоты с напряженной и ненапряженной резинами на основе кар-боксилатного каучука СКС-30-1. Это видно из рис. 1, где представлены кинетические кривые перехода в раствор кислоты ионов Mg2+, образующихся при разрушении поперечных солевых связей [1]. Несмотря на то, что в опытах поверхность нерастянутых образцов была в 5 раз больше, чем растянутых, концентрация Mg2+, определяемая фотоколориметрическим методом, т. е. количество разорвавшихся связей при всех температурах у ненапряженной резины меньше, чем у напряженной. Взаимодействие азотной кислоты с напряженной резиной из СКФ-32 не сопровождалось образованием видимых трещин, однако и в этом случае скорость процесса, определенная по проникновению кислоты в резины (рис. 2), для напряженных образцов оказалась больше, чем для ненапряженных. [c.227]

    Противостарители — вещества, замедляющие процесс старения резин озонного растрескивания, разрушения влиянием многократных деформаций, теплового и светового старения. Физические противостарители (парафин, воск) растворяются в резине при вулканизации и затем диффундируют на поверхность, образуя пленку, стойкую к воздействию кислорода и озона. Для замедления термоокислительного старения в резины вводят антиоксиданты неозон Д, ацетонанил Р, диафен ФП, амид тиофосфоновой кислоты (Б-25), сантофлекс, неозон, флектал. Рекомендуется использовать смесь различных антиоксидантов. При этом возможны три случая проявления эффективности  [c.26]

    Озонное старение—деструкция каучуков под действием озона. Озон очень быстро реагирует с двойными С = С-связями с образованием озонидов. Распад озонидов приводит к снижению молекулярной массы. На поверхности резины появляются трещины, разрастание которых приводит к разрушению резины. В качестве анти-озонантов применяются ароматические амины, в частности пара-фенилендиамин и его производные. [c.246]

    Как первичный, так и вторичный смог оказывают неблагоприятное действие на здоровье людей, особенно страдающих нарушениями обмена веществ и дыхательных органов. Смог понижает видимость, и местность, пораженная смогом, имеег в целом безрадостный вид, краски приглушены, особенно цвета неба. Очень важны последствия воздействия смога на леса такие составляющие смога, как оксиды серы, озон и пероксиацилнитраты, заставляют желтеть. хвойные деревья и приводят к опаданию хвои. Загрязнения атмосферы, прежде всего вторичный смог, неблагоприятно действуют на всевозможные покрытия, металлы (значительно усиливают их коррозию), ускоряют старение резины, разъедают мрамор, угрожая разрушением памятникам культуры (эта проблема особенно актуальна для Флоренции). Таким образом, загрязнение атмосферы продуктам сгорания и вторичными продуктами имеет очень серьезные последствия для здоровья человека и экономики. Было показано, что смог оказывает заметное влияние и на климат местности в целом. [c.335]

    ОЗОНИРОВАНИЕ. 1) Окисление орг. соед. озоном с образованием озонидов нли др. продуктов. Использ. в орг. синтезе для получ. карбонильных соединений, в лаб. практике — для установления положения связей С=С. 2) Обработка озоном воздуха, воды или др. в-в, применяемая, напр., Д 1Я их обеззараживания. ОЗОНОСТОЙКОСТЬ резин, способность деформированных (растянутых) резин сопротивляться растрескиванию под действием Оз. Характеризуется временем до появления трещин или до полного разрушения образца при разл. конц. [c.397]

    АНТИОЗОНАНТЫ, в-ва, защищающие резины на ос1Юве ненасьш . каучуков от действия атм. озона. Присоединяясь по двойным связям макромолекулы каучука. О, образует нестабильные озониды. Распад последних сопровождается разрывом цепи, что ведет к растрескиванию, а иногда и к полному разрушению материала, особенно эксплуатируемого в напряженном (растянутом) состоянии. Благодаря применению А. сопротивление резин растрескиванию повышается в нек-рых случаях почти в 10 раз. [c.179]

    Технические возможности позволяют изучать образец в камере РЭМ при различных воздействиях (нагрев, охлаждение, сжатие, ионное травление и др), т.е. в процессе деформации, развития разрушений в полимерах. В частности, при исследовании методом РЭМ растрескивания резин в контролируемых условиях на специальном держателе с изогнутым в сторону электронного луча шаблоном изучают в режиме вторичных электронов расгрескивание резинового образца в результате стихийного продвижения в нем трещины (например, при озонном окислении или обработке серной кислотой). [c.357]

    Озонное старение резиновых изделий характеризуется образованием треш ин и разрушением резины, особенно находящейся в деформировгинном состоянии. В связи с этим проблема защиты резиновых изделий от воздействия озона актуальна и имеет большое значение [433,434]. [c.282]

    Химически активные среды влияют на прочностные свойства. материалов еще сильнее, чем физически активные. Эффект бывает настолько значительным, что разрущение напряженных материалов при одиовременнэд 1 воздействии химически активной среды часто рассматривалось как явление, не связанное с прочностными свойствами тел,—как качественно иной процесс. Так, например, при действии озоиа на растянутую резину скорость процесса разрушения может при определенной концентрации О , увеличиваться в сотни тысяч раз пэ сравнению со скоростью разрушения в отсутствие озона. Не раз высказывавшаяся одним из авторов и пpэвэдчмi л в этой книге идея о сходстве процессов коррозионного разрушения и статической усталости в последнее время начинает получать все более широкое распространение. Так, например, высказывается мнение, что существует аналогия между озонным растрескиванием резин и растрескиванием пластиков иод влиянием механических напряжений . В одной из японских работ процесс развития озонных трещин в растянутой резине описывается с помощью такого же метода и аналогично тому, как это делается при рассмотрении развития трещин в процессе хрупкого разрыва твердых тел . [c.250]

    При исследовании разрушения резин в присутствии агрессивной среды удалось четко показать, что разрыв носит более хрупкий характер у наполненных резин сравнительно с ненаполнен-ными, а также при действии больших напряжений. При испытании резин в химически агрессивной среде величина Ь уменьшается по сравнению с результатами в воздухе, так как относительная роль ползучести уменьшается вследствие резкого ускорения процесса разрушения. Это наглядно видно по результатам испытаний резин из наирита в озоне и резин из фторкаучука типа кель-Ф в азотной кислоте (рис. 163). Аналогичные данные получены по уменьшению величины а при действии воды на необработанные [c.290]

    Бакли и Робисон при исследовании кинетики озонного разрушения находящихся под постоянно действующим напряжением образцов вулканизата бутилкаучука ограничились начальной стадией этого процесса (до появления видимых трещин). В более широком диапазоне времени (вплоть до разрыва) исследовалась кинетика озонного растрескивания резин из СКБ под действием постоянного груза . Особое место занимают работы Брэйдена и Гента , в которых рассматривается разрастание под действием озона изолированного надреза, нанесенного на резину. [c.301]

    В работах Брайдена и Гента с целью предельного упрощения процесса растрескивания исследовались закономерности роста надреза на образце резины при / =сопз1 под влиянием озона. Доступной озону оставлялась только вершина надреза, вся остальная поверхность образца смазывалась силиконовой смазкой и таким образом изолировалась от влияния озона. Благодаря резкой локализации процесса и ограничению поверхности и объема разрушения статистический характер процесса в данном случае не может проявиться в такой степени, как при озонном растрескивании в обычных условиях. В работе сделаны следующие вы-воды  [c.309]

    Значение порога концентрации зависит от соотношения ме- <анической и химико-механической (пропорциональной химической) стойкости резины, т. е. от сопротивления статической усталости и коррозионной стойкости. Для одного и того же полимера значение будет уменьшаться с повышением агрессивности среды, так как постоянно, а одно и то же значение будет достигаться при все меньших и меньших концентрациях агрессивного агента (рис. 198). Так, разрушение вулканизата СКС-30-1 (MgO) в уксусной кислоте начинает резко ускоряться при концентрации кислоты 4-10 ммоль1моль, а в соляной кислоте—при концентрации в 100 раз большей. Это объясняется тем, что уксусная кнслота в водном растворе по отношению к вулка-низату СКС-30-1 (MgO) значительно более агрессивна, чем соляная . Можно было ожидать, что озон будет действовать на этот вулканизат гораздо сильнее, чем уксусная кислота. Это связано тем. что, во-первых, озон действует в газовой фазе, а пе в рас- [c.341]

    Интересно, что энергии активации озонирования НК и полихлоропрена почти одинаковы это коррелируется с практически одинаковой скоростью поглощения озона их плeнкaми , а также с данными по скорости накопления продуктов озонирования в растворе, полученными с помощью ИК-спектров . В связи с этим представляется более вероятным предположение, что повышенная стойкость резин из полихлоропрена к озонному растрескиванию связана не с меньшей его реакционной способностью к озону, а с более благоприятной физической структурой, чем у НК. Такой вывод подтверждается недавно полученными данными" о том, что вершины озонных трещин в резине из полихлоропрена имеют закругленную форму, а в резине из НК—острую, т. е. концентрация напряжений в НК значительно больше, чем в полихлоропрене. Наличие большого количества полярных групп у полихлоропрена, затрудняющее подвижность его цепей, препятствует росту трещин. При образовании надмолекулярных структур этот эффект должен еще более усилиться, а, как известно, склонность к образованию таких структур (в частности, к кристаллизации) у полихлоропрена выражена сильнее, чем у НК. Высокое значение энергии активации разрыва в озоне вулканизата полихлоропрена (8 ккал/моль) сравнительно с энергией активации озонирования его в растворе (2,6 ккал/моль) можно объяснить усиливающимся распадом надмолекулярных структур с повышением температуры при определении энергии активации разрыва. Распад надмолекулярных структур должен облегчать разрастание трещин н сопровождается поэтому сильным падением прочности. Предположение о разрушении надмолекулярной структуры по-лихлоропреиа было использовано и для объяснения температурной зависимости его долговечности в отсутствие агрессивной среды (см. стр. 246). Таким образом, энергия активации разрыва в озоне вулканизата полихлоропрена, по-видимому, не соответствует энергии активации химического взаимодействия озона с по-лихлороиреном, а является фиктивной величиной. [c.353]

    Все полученные результаты позволяют сделать следующие выводы 1. Скорость роста трещин в резинах в присутствии агрессивной среды определяется скоростью химического взаимодействия среды с полимером. 2. Условия испытаний (s= onst или a= onst) не оказывают заметного влияния на температурную зависимость процесса. Энергия активации процесса разрушения полимера в агрессивной среде в сильной степени зависит не только от характера химического взаимодействия со средой, но йот адсорбционных явлений, поскольку эта реакция гетерогенна. Данные по влиянию агрессивных сред на вулканизаты СКС-30-1 показывают, что в газообразном H I, действующем на поперечные связи О—Ме, величина энергии активации больше, чем в озоне, и равна 9,5 ккал/моль (а=200%). Кажущаяся энергия активации химического взаимодействия НС1 с полимером в водном растворе должна быть более высокой, чем при взаимодействии полимера с газообразным H I, так как она складывается из энергии активации дегидратации НС1 (по имеющимся данным , она равна 8,6 ккал/моль), энергии активации дегидратации активных центров полимера и энергии активации взаимодействия дегидратированного НС1 с полимером. Кажущаяся энергия активации процесса разрушения резин в растворах СН3СООН как при малых, так и лри больших деформациях несколько ниже (см. табл. 25), чем в растворах H I, что, по-видимому, связано с меньшей энергией дегидратации молекул уксусной кислоты и с лучшей ее адсорбцией на полимере. [c.354]

    В ряде работ имеются данные по температурной зависимости времени до появления трещин при действии озона на резины. Мацуда и Танака , пользуясь этим показателем, провели обширное исследование разрушения резин из НК, содержащих различные наполнители. [c.354]


Смотреть страницы где упоминается термин Разрушение озоном резины: [c.128]    [c.356]    [c.22]    [c.50]    [c.135]    [c.260]    [c.262]    [c.292]    [c.328]    [c.344]    [c.345]   
Смотреть главы в:

Лекционные опыты по общей химии -> Разрушение озоном резины

Химический демонстрационный эксперимент -> Разрушение озоном резины




ПОИСК





Смотрите так же термины и статьи:

Озоно

Озоны



© 2025 chem21.info Реклама на сайте