Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Согласованные кооперативные эффекты

    Для обменных реакций с участием групп 8Н, как указывалось, характерно относительно медленное протекание процесса Н-обмена и большие величины энергии активации. Высокое значение АЕа (см. табл. 1) трудно согласовать с предположением, что лимитирующей стадией является образование промежуточного комплекса с Н-связью, ибо этот процесс характеризуется очень низким активационным барьером б. Для подобных систем был сделан вывод [24, 25], что Н-обмен лимитируется актом кооперативного перехода протонов в промежуточном комплексе. Аналогичное заключение сделано в [42] для системы спирт—карбоновая кислота, что подтверждено в этой работе довольно сильным кинетическим изотопным эффектом (/сн/А 1) = 8). Именно в случаях, когда лимитирующей стадией является переход протона, следует ожидать значительного уменьшения скорости реакции при замене протона на дейтон [44]. [c.283]


    Многие из этих наблюдений, например более высокие меньшие значения сорбции, коэффициента диффузии и механических потерь (в некоторых случаях), согласуются с объяснением в рамках адсорбции полимерных сегментов на границе раздела фаз [515, 517]. Процесс адсорбции сопровождается уменьшением числа степеней свободы и, как следствие, понижением энтропии и подвижности цепей — отсюда общее использование термина упорядочение . Легко представить такой процесс в случае малых частиц, для которых даже тонкий слой адсорбированного и закрепленного за счет зацеплений полимера (скажем, толщиной в 10—100 А) может составлять значительную долю полимера, обладающего свойствами, отличными от свойств в блоке. Толщина слоя такого порядка величины, очевидно, совпадает с расстоянием, на которое распространяется действие типичных сил поверхностного поля. Некоторые исследователи считают, что зона влияния значительно больше (10 А или более [515, 517]) благодаря существованию кооперативных сегментальных эффектов, действующих далеко от поверхности. Существенная роль адсорбции подтверждается тем, что изменения Тд могут (по крайней мере, в некоторых случаях) коррелировать с теплотами адсорбции модельных соединений на поверхности наполнителей [1003]. Исследования такого типа могут помочь в объяснении имеющих- [c.380]

    Для того чтобы использовать триплетное состояние в качестве зонда при исследовании реакций повторного связывания лиганда, был проведен лазерный флеш-фотолиз комплексов с порфирином, не содержащим железа. Интересно отметить, что скорость кислородного тушения триплетного состояния уменьшается при переходе от мшоглсйина к гемоглобину (для комплексов с порфирином, не содержащим железа). Однако процесс повторного присоединения лиганда не контролируется диффузией кислорода, так как методом остановленной струи было показано, что повторное присоединение лиганда является существенно более медленным процессом. Результаты, падучеяные при кислородном тушении триплетных состояний модельных соединений гемоглобина а- и р-цепей в комплексе с порфирином, не содержащим железа), по-видимому, не согласуются с кооперативными эффектами, наблюдаемыми при взаимодействии нативного гемоглобина с кислородом. [c.122]

    Пэтел и сотр. [69] кроме спектров миоглобина (см. разд. 14.2.4.1) исследовали также спектры водных растворов окси-и дезоксигемоглобинов в области от О до —5 т. В спектрах свободных р-цепей были обнаружены резонансные сигналы обменивающихся NH-протонов индольного кольца триптофанов Л-12 и С-3 при —0,2 и —0,5 т. Их положение фактически не зависит от степени окисления гем-групп или от ассоциации в некооперативный Р4-тетрамер. Ни для одного из состояний Р-цепей не было обнаружено сигналов в области ниже —0,6т, в отличие от миоглобина (см. предыдущий раздел). Триптофан Л-12 из а-цепей в этой области не дает сигнала обменивающегося протона. В частности, примечательно, что триптофановые остатки действительно слишком удалены от гем-группы, чтобы можно было ожидать значительных сдвигов за счет сверхтонкого взаимодействия или эффектов кольцевого тока, что согласуется с этими наблюдениями. Тем не менее спектры окси- и дезокси-форм кооперативного тетрамера (ар)г, т. е. интактного гемоглобина, заметно различаются. Было высказано предположение, что смещение пика при —2,18 т, соответствующего одному протону в спектре оксигемоглобина НЬОг, к —4,14 г при дезоксигенации указывает на перестройку четвертичной структуры, которая сопровождает это превращение (см. с. 375), или на изменение третичной структуры, связанное с этой перестройкой. [c.378]


    Таким образом, молекулы воды А и Б образуют более прочные водородные связи типа -Нд.. . ОН2 и 0Б. . . НОН. Следовательно, образование одной водородной связи повышает константы образования других водородных связей, и в этом состоит природа кооперативно-сти образования водородных связей в модели короткоживущих клас теров в жидкой воде (разд. 2.Г). Полный теоретический расчет методом МО ЛКАО линейного тримера молекул воды [407, 507, 508] подтверждает предполагаемую кооперативность (рис. 2.4). Каждый открытый акцепторный центр (на рис. 2.4 обозначен- ) в димере имеет повышенный на 1,6 — 5,8% отрицательный заряд по сравнению с отдельной молекулой воды. Положительный заряд на каждом атоме Нг не участвующем в образовании водородной связи протон-акцепторной молекулы воды [А в (2.11)], повышается на 2,5 — 5,2%, тогда как заряд на единственном несвязанном атоме водорода протонодонорной молекулы воды Я (Б) понижается на 3,0 — 3,3%. Результаты различных количественных расчетов не согласуются между собой в оценке, какой эффект больше — понижение или повышение заряда. Таким образом, повышение основности димера установлено достаточно надежно, чего нельзя сказать о повышении кислотности. [c.266]

    Изложенные теоретические результаты могут быть сопоставлены с экспериментальными данными по термодинамической гибкости (т. е. степени свернутости) полимерных цепей в растворе и высокоэластическом состоянии, в частности с данными по средним размерам и средним дипольным моментам макромолекул в растворе, по температурной зависимости размеров, по энергетическим эффектам при растяжении блочного полимера и т. д. Построение статистической теории, связывающей параметры гибкости макромолекул с данными физическими характеристиками, требует использования математического аппарата статистической физики одномерных кооперативных систем (например, матричного метода модели Изинга). Сравнение такой теории с опытом привело к хорошему согласию и позволило оценить сравнительную роль двух возможных механизмов гибкости в статистическом закручивании макромолекул. Во всех исследованных случаях оказалось, что наблюдаемая закрученность цепей практически цслк1 о т обусловлена поворотной изомеризацией, а крутильные колебания играют второстепенную роль. [c.285]

    Конформационная специфика гидрофильных остатков не может быть полностью объяснена только невалентными взаимодействиями. Боковые цепи, содержащие группы -ОН (Ser, Thr), -СОО" (Asp, Glu), -NH3 (Lys) и т.д., в белках участвуют в образовании водородных связей с собственной основной цепью и с боковыми цепями других остатков, электростатических взаимодействий и солевых эффектов. В качестве примеров остатков с гидроксильной группой рассмотрим конформационные состояния в белках боковых цепей серина и треонина. Прежде всего оценим их конформационные возможности в свободном состоянии с точки зрения невалентных взаимодействий. Контактный радиус атома О (1,5 А) лишь немного больше радиуса Н (1,2 А) кроме того, связь С-О (1,43 А) длиннее связи С-Н (1,09 А). Поэтому группа -СН2ОН в отношении невалентных взаимодействий с основной цепью близка к метильной группе, и конформационная свобода Ser практически не уступает Ala. Следовательно, все ротамеры относительно %i (-60, 180, 60°) по невалентным взаимодействиям у Ser должны быть приблизительно равновероятны. У остатка Thr, подобно Val и Пе, разветвление в боковой цепи начинается у атома С . Поэтому у него, как и у остатков валина и изолейцина, наиболее вероятными должны быть те состояния, в которых атомы и С не находятся между связями N- и С -С, что имеет место при = 60°. В согласии с расчетом монопептида Thr боковые цепи этого остатка чаще всего встречаются в положении %i = 180° (60%). Далее следует Xi —60° (30%) и Xi - 60° (10%). Упомянутое стерическое ограничение отсутствует у серина, и в распределении конформаций у него по углу % все три ротамера (-60, 180 и 60°) представлены достаточно полно (соответственно 45, 25 и 30%). У остатков Ser и Thr, как известно, выражена тенденция избегать в белках внутренние витки а-спиралей. Гомополипептиды Ser и Thr не образуют а-спиралей, а существуют в форме -структуры. В сополимерах с а-спиральными остатками они дестабилизируют, а при большом содержании разрушают а-спирали. Тем не менее на нерегулярных участках белков у Ser и Thr конформации R и Б представлены с равными весами. Следовательно, отсутствие соответствующих а-спиральных полипептидов связано не с меньшей вероятностью нахождения остатков в конформации R, чем в В, а иными причинами, обусловленными кооперативным характером взаимодействий в а-спирали. [c.188]


Смотреть страницы где упоминается термин Согласованные кооперативные эффекты: [c.55]    [c.296]    [c.188]    [c.149]    [c.378]    [c.74]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кооперативное

Кооперативный эффект

Согласованный акт



© 2025 chem21.info Реклама на сайте