Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спиральная конфигурация полипептидов

    Замечательным явилось сходство рентгенограмм (перечисленных фибриллярных белков и той структурной формы синтетических полипептидов, которая оказалась нечувствительной к их химической структуре. Речь идет об а-спирали. Получены убедительные признаки существования а-спиральной конфигурации в полипептидных цепях фибриллярных белков. Из меренный по рентгенограммам шаг спирали (около 5 А) и величина проекции одного остатка на ось волокна (около 1,5 А) согласуются с расчетными данными для а-спиральных структур. Дихроизм поляризованных инфракрасных спектров поглощения перечисленных фибриллярных белков указывает на то, что. водородные связи в этих белках [c.542]


    NH—СО— HR—, спираль образует правый винт. Широкое распространение а-спиральных структур среди синтетических полипептидов дает основание полагать, что такие спирали являются наиболее характерными и устойчивыми конфигурациями полипептидных цепей. Впоследствии это подтвердилось многочисленными физико-химическими исследованиями, в которых изучалась стабильность а-спиральной конфигурации полипептидов в самых различных условиях. Было обнаружено, что а-спираль стабильна в сравнительно широком диапазоне условий (pH, температура), а также в условиях, при которых многие белки остаются нативными. [c.540]

    Молекулы одной и той же химической структуры могут различаться геометрической формой благодаря возможности поворотов отдельных звеньев вокруг простых связей, соединяющих эти звенья. Образующиеся таким образом различные геометрические формы макромолекулы называются конформациями. Молекула может иметь разные конформации, которые переходят друг в друга при определенных условиях без разрыва химических связей. В этом отличие конформации макромолекулы от ее конфигурации. Простейшая конформация молекулы — это плоский зигзаг. Такая конформация преобладает в молекулах полиэтилена. Более сложными конформациями являются спиральные формы цепей. Спиральной конформацией обладают, например, макромолекулы полипептидов, винильных изотак-тических полимеров — полипропилена, полистирола, полибутена-1. [c.26]

    Спиральные конфигурации полипептидов с Н-связью. [c.360]

    Исследования ДОВ и КД имеют особенно большое значение при изучении оптически активных полимеров, например винильных полимеров с оптической активностью в основной цепи, простых и сложных полиэфиров, полиальдегидов и биополимеров, например полипептидов и белков в а-спиральной конфигурации. [c.195]

    Уравнение (XVI. 4) можно получить на основании приближенной теории, исходя из модели связанных осцилляторов. В этом уравнении фигурируют три (а не четыре, как в двучленном уравнении Друде) параметра, определяемых экспериментально. В отличие от параметра параметры о и Яо почти не зависят от природы растворителя. Поскольку второй член в уравнении (XVI. 4) описывает вклад спиральной структуры в дисперсию оптического вращения, параметр Ьо может служить мерой содержания спиральных форм в макромолекуле. В большинстве случаев данные по дисперсии дают возможность достаточно точно определить эти три параметра. Параметр >о определяют по наклону кривой зависимости [/га ](Я —Хо) от построенной на основании уравнения (XVI. 4). Значение Яо подбирают методом проб й ошибок так, чтобы получить прямую линию. Поскольку как для хаотического клубка, так и для а-спиральной конфигурации многих белков и полипептидов Яо 212 ммк, вклад а-спиральной конфигурации характеризуется только величиной параметра Ьо- [c.289]


    Третичная структура Конфигурация полипептид ной спирали в пространстве определяет ее третичную структуру. Иными словами, третичная структура — это способ укладки спиральных структур в частицах глобулярных белков (в глобуле). [c.43]

    Удовлетворять отмеченным выше геометрическим критериям могли только спиральные структуры полипептидной цепи, поэтому Хаггинс предложил спиральное строение полипептидов. Оказавшаяся столь плодотворной идея спиральности молекулярных структур биополимеров впервые была высказана им в 1942 г. [31]. Лишь для фиброина шелка и Р-кератина Хаггинс, в согласии с Мейером, Марком и Астбери, допускал плоскую форму цепи. Для различных фибриллярных белков им было предложено большое число спиральных структур, существенно отличающихся от ленточных структур У. Астбери. М. Хаггинс разработал модель пептидной цепи, которая включала в качестве основного структурного элемента семичленный цикл, замыкаемый водородной связью. Непрерывное повторение в цепи этого элемента при сохранении нормальных значений валентных углов и плоской конфигурации пептидных групп приводит к неплоской структуре полипептида с винтовой осью второго порядка. Такая структура должна давать в рентгенограмме слабый рефлекс 5,0 А и сильный [c.16]

    Также как синтетические полипептиды, а-белки могут быть переведены в р-форму. Это достигается растяжением, иногда в специальных условиях. Рентгенограммы р-белков показывают, что их молекулярные цепи принимают при растяжении вытянутую конфигурацию. Водородные связи -в р-белках также, как в синтетических/полипептидах, направлены перпендикулярно оси волокна. р-Форма белков нестабильна и после удаления растягивающего усилия, как правило, вновь восстанавливается а-спиральная конфигурация цепей. Только один белок,— фиброин шелка в естественном состоянии существует в виде р-формы. Образование Р- Конфигурации цепей в фиброине шелка происходит в тот момент, когда шелковичный червь прядет шелковую нить. Образующиеся при этом большие силы давления развертывают молекулярные цепи белка. Стабильность образовавшейся р-конфигурации в нити фиброина шелка объясняется тем, что на отдельных фрагментах молекул этого белка скапливаются остатки с короткими боиовыми цепями — глицин, аланин, серин. Отталкивание боковых групп этих остатков во много раз меньше отталкивания больших боковых цепей других аминокислот. Поэтому Р-структуры, возникающие на отдельных фрагментах цепей фиброина шелка (в местах скоплений остатков с короткими боковым и дшями), оказываются относительно стабильными. Это подтверждается изучением р-структур синтетических полипептидов с короткими боковыми цепями, таких, как поли-(глицил- аланин). [c.543]

    Какие из перечисленных ниже белков и полипептидов могут принимать а-спиральную конфигурацию фиброин шелка, выделяемого Bombyx mori, коллаген, кератин пера, миоглобин, полиглицин, натриевая соль поли-Ь-глутаминовой кислоты, полипролин По каким причинам некоторые белки не способны принимать эту конфигурацию  [c.258]

    В действительности реакции, подобные описанной выше, не идут самопроизвольно и для их осуществления в тканях живых существ требуется сложный механизм, включающий в себя большое количество ферментов. Аминокислоты, соединенные пептидными связями, образуют цепочки , носящие название полипептидов. Полипептиды представляют собой первичную структуру белка. В силу ряда термодинамических причин эти полипептидные цепочки стремятся принять спиральную конфигурацию. Спкральная конфигурация полипептидных цепей носит название вторичной структуры белка. В образовавшихся спиралях водород ЫН-груп-пы пептидной связи вступает во взаимодействие с кислородом С=0 группы пептидной связи соседнего витка. Образовавшаяся новая связь носит название водородной связи. [c.50]

    Наконец, третья особенность этой конформации состоит в том, что боковые радикалы аминокислот обращены наружу. Не принимая непосредственного участия в построении углеродного скелета а-спирали, эти радикалы могут способствовать созданию напряжений, несовместимых со спиральной конфигурацией, и разрыву водородных связей, т. е. образованию аморфных участков. Поэтому структура а-спирали позволяет получить максимальную изменяемость белковой структуры и, следовательно, обеспечить исключительное разнообразие химической специфичности белков. Расположение боковых радикалов аминокислот весьма существенно и с другой точки зрения. Если мы представим себе а-спи-раль, построенную из природных -аминокислот (рис. 19), то при 1шправлении вращения слева направо (правая спираль) все боковые цепи будут располагаться вдоль оси от С-конца к Ы-коп-цу, т. е. в направлении, обратном направлению полипептидной цепи. Если же спираль левая, то боковые радикалы будут направлены вдоль оси по направлению полипептидной цепи. Так как на каждый виток спирали приходится 3,6 таких радикалов, то их упаковка и взаимодействие для каждого типа спирали будут совершенно различны. При этом необходимо учесть, что именно это взаимодействие и определяет выбор направления вращения спирали. К сожалению, теория Полинга и Крика не. может ничего сказать о том, каково должно быть это направление, поскольку для построения модели оно совершенно безразлично. Для большинства исследованных полипептидов оказалось, что природные аминокислоты образуют правые спирали они же были обнаружены и в ряде белков. [c.98]


    Величину [т] для полипептида в форме спирали или клубка можно легко рассчитать, если нам известны молекулярный вес аминокислотного остатка и удельное вращение [а]д Для спиральной и клубковой форм. Последнее определяют в опытах по плавлению а-спиралей синтетических полипептидов. Так, если оттитровывать боковые карбоксильные группы поли-глютаминовой кислоты щелочью, то нейтральные СООН-груп-пы будут переходить в заряженные СОО--группы. В результате вдоль молекулы начнут действовать мощные силы электростатического отталкивания, способные разорвать водородные связи и полностью расплавить а-спираль, (рис. 21). Это разрушение а-спирали происходит в узкой зоне pH и сопровождается резким изменением оптической активности. Удельное вращение теряет большой положительный инкремент, создаваемый а-спиралью, и падает от -Ьб до —80°. Так как спираль полностью разрушена, то эта величина, —80°, и есть удельное вращение клубковой формы, обусловленное а-углеродными атомами -аминокислот. Соответственно вклад а-спирали гораздо больше и обратен по знаку, составляя +86°. Алгебраическая же сумма обеих величин, т. е. [а]о спиральной. конфигурации, близка к нулю ( + 6°). [c.103]

    Вычислим величину [т] для двух полипептидов, растворимых в воде, а -именно полиглютаминовой кислоты и полилизина, при условиях, когда цепь полипептида не упорядочена и образует статистический клубок. Для этого берем данные для полиглютаминовой кислоты при щелочном pH, когда она полностью заряжена и, следовательно, не имеет спиральной конфигурации. Тогда для нее [а] (т. е. удельная активность, измеренная при [c.68]

    Спрашивается 1) можно ли с уверенностью пользоваться критерием оптической активности, чтобы судить о наличии спиральной конфигурации внутри макромолекулы и 2) можно ли прокалибровать изменение оптической активности при денатурации на ряде модельных веществ и пользоваться им для количественного измерения степени спиральности в бедках На оба вопроса мы не можем сейчас дать утвердительный ответ без ряда оговорок. Несомненно, что а-спиральная структура Полинга—Кори может быть безупречно доказана только рентгеноструктурньш анализом. В этом смысле мы уверены в ее наличии у ряда синтетических полипептидов (в пленках) и у двух хорошо изученных глобулярных белков — миоглобина п гемоглобина. Мы можем заключить отсюда, что эта структура типична для белков вообще, однако сегодня эта гипотеза еще не доказана. Что мы можем утверждать с уверенностью, — это наличие в макромолекулах полипептидов и глобулярных беЛков упорядоченной структуры, со.здающей большой вклад в оптическую активность. Без большого положительного инкремента, создаваемого структурой белка, нево.зможно объяснить явления оптической активности белков. [c.69]

    Заслуживает внимания работа Эли по изучению анизотропии проводимости в монокристаллах аминокислоты глицина [382]. Автор отмечает, что проводимость вдоль направления водородных связей в кристалле больше, чем по другим направлениям, а энергия активации соответственно меньше. Попытка исследовать анизотропию проводимости в пленках синтетических полипептидов с а-спиральной конфигурацией молекул была сделана К. Ф. Турчи-ным [265]. [c.298]

    М. к. Пулатова, В. Н. Рогуленкова и Л. П. Каюшин [197] повторили опыты Л. А. Блюменфельда и Горди, исследовав тщательно зависимость характера сигнала ЭПР облученных белков от степени вакуумирования. Ими было обнаружено, что в случае, если облучение белка ведется в глубоком вакууме, сигнал ЭПР имеет форму дублета глицил-глицинового типа, т. е. подтвердились данные Горди. По мере поглощения облученным белком воздуха дублетный сигнал превращается в синглет, подобный тому, который был зафиксирован Л. А. Блюменфельдом далее, с течением времени сигнал исчезает. Дублетный сигнал, полученный для денатурированных белков, по мере поглощения ими воздуха не меняет своей формы, а лишь уменьшается со временем. Никакие пептиды, в которых водородные связи пептидных групп СО и НН замыкаются на концевые карбоксильные или аминные группы (в частности глицил-глицин), не обнаруживают перехода дублетной формы сигнала в синглетную, т. е. этот эффект не обнаруживается в пептидах, не имеющих регулярной сетки пептидно-водородных связей. Однако синтетические полипептиды, имеющие а-спиральную конфигурацию молекулярных цепей, ведут себя подобно нативным белкам. Если разрушить эту конфигурацию нагреванием, расплавить регулярную сетку водородных связей и перевести полипептиды в аморфное состояние, их поведение оказывается аналогичным денатурированным белкам. Авторы делают предположение, что при поглощении белками кислорода воздуха и, может быть, паров воды облегчается переход электронов из ловушек в зону проводимости. Неспаренные электроны мигрируют по цепочкам пептидно-водородных связей в те места, где они могут рекомбинировать. В противном случае рекомбинация невозможна, так как предполагаемые ловушки электронов в белках стерическн недоступны. Эта работа заставляет принять во внимание особую роль регулярной сетки пептидно-водородных связей для интерпретации данных ЭПР облученных белков. [c.301]

    Альфа-спираль Полинга — Корея, таким образом, дала решение вопроса о вторичной структуре белковых молекул. Но необходимо отметить, что это были чисто расчетные построения точных, прямых экспериментальных доказательств, несмотря на всю убедительность теоретической базы, в течение некоторого времени получено не было. В пользу этой теории говорили только опыты с синтетическими полиаминокислотами, проведенные Бамфор-дом с сотрудниками, в которых была доказана а-спиральная структура у нескольких синтетических полипептидов (см. [34]). Кроме этого, сторонники а-спиральных конфигураций белковых молекул обладали лишь косвенными рентгеноструктурными данными, свидетельствующими в пользу а-спирали, полученными на фибриллярных белках (например, из игл дикобраза). Но несмотря на это, гипотеза стремительно раопространялаеь и находила все большее и большее число сторонников из-за того, что она позволила объяснить и систематизировать многочисленные факты, связей между которыми раньше установить не удавалось, например денатурация белков и др. При помощи определенных методов дейтеро-водородного обмена получены многочисленные качественные характеристики числа водородных связей в спиралях, термодинамических переходов, происходящих при деспира-лизации полипептидной цепи и некоторые другие данные. Все они очень хорошо укладывались в рамки теории Полинга — Корея. И все же это были лишь косвенные доказательства, но несмотря на это, представление об а-спирали, как основной конфигурации полипептидных цепей, общей для всех белков, получило повсеместное признание. Переломным годом в распространении признания наличия а-спиралей в белках необходимо считать 1952 г. Д. Кендрью на Конференции по структуре белка в Пасадене в 1953 г. сказал Нельзя сказать, что в мае 1952 г. спираль была основой наших представлений о структуре белка. В самом деле, тогда имелись серьезные разногласия по вопросу о существовании спиральных цепей. Конференция в Пасадене показала, что спиральная структура вступила в свои права... Из обсуждения, имевшего место на Конференции, можно было заключить, что а-спираль является основной конфигурацией цепи, имеющейся в а-полипептидах (см. [150]). [c.147]

    По общепринятому представлению Л. Поллинга и Р. Кори, в молекулах белков имеются многократно повторяющиеся структурные полипептидные единицы со спиральной конфигурацией, получивщие название а-спиралей (рис. 3). Схема свидетельствует, что отдельные витки спирали полипептида соединены водородными связями. [c.34]

    Отрезки цепи намного меньше сегмента (например, звенья) в основном имеют выпрямленные конфигурации, а отрезки больше сегмента — свернутые конфигурации. Сегмент обладает и теми, и другими свойствами. Он легко принимает выпрямленные состояния и, таким образом, является исходным кинетическим элементом для процесса образования упорядоченных структур полимеров. Сегменты гибкоцепных полимеров (в частности, эластомеров) включают 5—10 звеньев цепи. Сегменты жесткоцепных полимеров, например таких, как спиральные полипептиды, алкилполиизоциа-наты, включают несколько сотен звеньев, а полужесткоцепные полимеры типа поликарбонатов (ПК) занимают промежуточное положение (в сегменте несколько десятков звеньев). [c.16]

    Конформация цепей полимеров виниловых мономеров определяется конфигурацией последоват. асимметрич. атомов С, фрагмента — HR—. В изотактич. полимерах (—СН — HR—) плоская зигзагообразная конформация цепи невозможна из-за стерич. отталкивания соседних групп R. Вследствие этого происходит последоват. транс-гош-ориентация связей и цепь приобретает спиральную конформацию, закрученную влево или вправо. Изотактич. макромолекулы могут образовывать спирали разных видов, а синдиотактические-могут существовать не только в виде спирали, но и в виде плоского зигзага. В тех полимерах, у к-рых радикалы не слишком объемны, спираль содержит три мономерных звена на виток (тип 3,), как, напр., у изотактич. полипропилена (табл. 2). В случае полимеров, содержащих объемные боковые группы, образуются более развернутые спирали. Так, спираль в макромолекуле поли-винилнафталина содержит четыре звена в витке (тип 4,). Спирально-упорядоченные структуры макромолекул характерны для полипептидов, белков, нуклеиновых к-т. Форма и размер заместителей в мономерном звене С.п. определяют не только параметры спиральной конформации цепей в решетке, их т-ры плавления, но и скорость кристаллизации, р-римость и осн. деформац.-прочностные св-ва. Изотактич. полимеры, содержащие очень объемные заместители, характеризуются высокими т-рами плавления и стеклования (табл. 2). [c.429]

    При анализе ряда глобулярных белков было установлено, что они имеют в растворе весьма компактные формы, размеры которых не сравнимы по величине с размерами, ожидаемыми для стержнеобразных а-спиралей сходного молекулярного веса. Гидродинамические данные и результаты светорассеяния указывают также, что пространственная конфигурация у белков этого класса более компактна, чем у беспорядочных клубков. Чтобы объяснить это кажущееся несоответствие, необходимо допустить, что молекулы глобулярных белков представляют собой сверхклубки , состоящие из коротких спиральных сегментов, разделяемых неспиральными зонами. Последние наделяют полипептидные цепи достаточной гибкостью, чтобы они могли свернуться в компактную глобулу, которая стабилизируется различного рода вторичными связями. Следовательно, в молекуле белка мы имеем как спиральные, так и аморфные участки. Что же касается синтетичесАх полипептидов, то здесь, как уже говорилось, конформация полипептидной цепи зависит от природы растворителя в одних вторичная структура этих соединений представлена спиральной формой, в других— беспорядочным клубком. Каким образом можно различить эти два типа вторичной структуры  [c.101]

    Существование а-спирали в природе было подтверждено результатами последующих исследований структуры как природных, так и синтетических полипептидов, проведенных с помощью различных физических методов, в основном с помощью метода рентгеновской кристаллографии. Структуру а-спирали принимает, например, молекула полиглицина, который является наиболее простым из всех возможных полипептидов и а-углеродные атомы которого не имеют боковых цепей. Конфигурацию а-спирали принимают также отдельные участки полипептидных цепей многих природных белков, хотя едва ли существуют полностью спиральные белки. Большинство природных белков содержит также неспирали-зованные участки. Наличие в белках неспирализованных участков объясняется тремя причинами. Во-первых, присутствие остатка пролина (фиг. 15), а-аминогруппа которого не может участвовать в образовании [c.93]

    Этот метод, основанный на из.менении оптического вращения с изменением длии волн монохро.матического света, дает дополнительную информацию о структуре белка. Для синтетических полипептидов, таких, как поли-Ь-глутами-иовая кислота, кривые дисперсии различны для конфор.мацин неупорядоченного клубка, образующегося при pH 7 и спиральной конфор.мацни, образующейся прн pH 4,3 (рис. 6.18). Различие кривых дисперсии обнаружено также для нативны.х и денатурированных белков. Для расчета процентного содержания спиральных фор.м в белках используются различные фор.мулы, выведенные тео-ретически.м или эмпирическим путе.м. Однако в настоящее время приходится констатировать, что такого рода методы не могут давать точных абсолютны. значений, а способны лишь регистрировать из.менения в содержании а-спиральных форм у глобулярных белков, многие из которых имеют всего О—10%, а другие — до 70—80% аминокислотных остатков в этой конфигурации. Эти. методы представляют особую ценность при наблюдении конформационных переходов в белках, в то время как точное определение конформации и процента спи-ральности достигается сейчас лишь на основе данных рентгеноструктурного анализа. [c.202]


Смотреть страницы где упоминается термин Спиральная конфигурация полипептидов: [c.539]    [c.238]    [c.102]    [c.241]    [c.242]    [c.142]    [c.115]    [c.198]    [c.39]   
Водородная связь (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Полипептиды



© 2025 chem21.info Реклама на сайте