Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химико-технологическая система ХТС получения

Рис. УП-8. Преобразованный потоковый граф химико-технологической системы, полученный после первого и второго этапов декомпозиции. Рис. УП-8. Преобразованный потоковый <a href="/info/942443">граф химико-технологической системы</a>, <a href="/info/1518405">полученный после</a> первого и <a href="/info/972611">второго этапов</a> декомпозиции.

    Химико-технологическая система получения этилена включает следующие подсистемы (установки)  [c.352]

    Химико-технологическая система получения этилена включает следующие подсистемы (установки) пиролиз углеводородов компримирование газа пиролиза удаление тяжелых углеводородов осушка газа пиролиза на цеолитах разделение газа пиролиза (фракционирование) удаление сероводорода, диоксида углерода и ацетилена из газа пиролиза. [c.389]

    Наиболее типичными целевыми функциями физической интенсификации при заданных ограничениях являются сокращение продолжительности лимитирующих стадий процессов, сокращение энергозатрат, увеличение производительности и к. п. д., улучшение качества продуктов, получение продуктов со свойствами, не достигаемыми по традиционной технологии, уменьшение габаритов аппаратов и расхода материалов на их изготовление, экономия сырья, проведение совершенно новых процессов, улучшение экономических и эргономических характеристик оборудования, ведение непрерывных управляемых процессов. Обрабатываемые вещества совместно с аппаратом и условиями, при которых проходит процесс, образуют сложную физико-химическую систему. Подобная система характеризуется взаимосвязью отдельных частей и их взаимодействием между собой, со смежными системами в общей химико-технологической системе и с окружающей средой. Свойства и поведение системы являются в общем случае динамическими и стохастическими. [c.7]

    Ранее было отмечено, что контактные узлы сернокислотного производства (см. рис. 23, 24) содержат обратные связи по теплу между реакционной смесью и исходным газом, т. е. представляют собой замкнутые химико-технологические системы. Как показано в работах [85, 86], наличие в схемах контактных узлов обратных тепловых потоков может привести к появлению неустойчивых режимов при определенных значениях параметров. При этом условия баланса по веществу и теплу в разрывах обратных потоков, выполнения которых обычно достигают при проведении итерационного расчета схемы относительно переменных в разрывах , целесообразно перенести на уровень оптимизации, рассматривая их как ограничения типа равенства и считая переменные в разрывах дополнительными варьируемыми переменными [см. задачу 4, выражения (I, 79)—(I, 81)]. Это позволяет в каждой точке расширенного пространства варьируемых переменных, полученной в процессе оптимизации, выполнять расчет лишь разомкнутой схемы, и, таким образом, избежать при выполнении вычислений появления нежелательных нулевых режимов и неоднократной проверки условий неустойчивости. Эти условия достаточно проверить лишь в конечной (оптимальной) точке. Таким образом, прием вынесения ограничений в критерий оптимизации (составную функцию), позволяет перейти к эквивалентной задаче оптимизации для разомкнутой схемы в расширенном пространстве варьируемых переменных. [c.146]


    Производственные процессы в химической, нефтехимической, металлургической и других отраслях могут существенно различаться видом сырья и продукции, условиями проведения, мощностью аппаратуры и т.д. Однако при всем многообразии конкретных процессов современное химическое производство имеет одно общее это сложная химико-технологическая система, состоящая из большого числа аппаратов и разнообразного оборудования (узлов) и связей (потоков) между ними. При этом под химико-технологической системой (ХТС) понимается совокупность всех процессов и средств для их проведения с целью получения продукта заданного качества и в требуемом количестве. [c.138]

    Самоорганизация в химико-технологических системах имеет различные формы проявления. Одну из таких форм рассмотрим на примере процесса получения экстракционной фосфорной кислоты (ЭФК) из природных апатитов в двух технологических схемах 1) состоящей из емкостного экстрактора с перемешиванием и трехсекционного кристаллизатора без рецикла [c.37]

    Химико-технологическая система (ХТС) — это совокупность взаимосвязанных технологическими потоками и действующих как одно целое аппаратов, в которых осуществляется определенная последовательность технологических операций. Газоперерабатывающее производство является разновидностью такой системы. Под моделированием ХТС подразумевается ее представление в виде системы уравнений математической модели, которые используют для получения информации о характеристиках изучаемого объекта. [c.313]

    Применение методов кибернетики в химической технологии открывает возможность системного анализа, когда при исследовании или организации производственного процесса, как системы, вся информация, полученная, начиная с лабораторных исследований (рис. УП-18), на опытных установках и при синтезе химико-технологических систем, последовательно накапливается, обогащается и реализуется в виде алгоритмов на ЭВМ. На последнем этане, после математического моделирования всей химико-технологической системы, обобщенная и систематизированная информация передается для использования при проектировании ХТС. Системный анализ является научной основой резкого сокращения сроков реализации лабораторных разработок в промышленности. Остановимся более подробно на отдельных этапах системного анализа . [c.483]

    Данная формулировка уже предполагает наличие некоторой информации об основах химико-технологического процесса, полученной на ранней стадии его проработки, и который необходимо реализовать в некой ХТС. Конечно, данные предварительной проработки процесса можно корректировать, что может привести даже к созданию ХТС на другой основе. При построении системы можно проработать задачу использования альтернативного сырья или источника энергии, рассмотреть иные стадии процесса или принципиально другое аппаратурное оформление процесса. С другой стороны, результат синтеза ХТС есть основа для проектирования производства. И здесь возможно потребуется проработка других вариантов ХТС, удовлетворяющих требованиям, возникающим на стадии проектирования, выполнения рабочих проектов оборудования и других составляющих частей производства. Это может быть связано с наличием необходимого оборудования и его стоимостью, ограниченными или, наоборот, широкими возможностями заводов-изготовителей и транспортировки оборудования, условиями строительно-монтажных работ, условиями дальнейшей эксплуатации всей системы. [c.293]

    Многослойные реакторы и системы реакторов будут рассмотрены позже как часть химико-технологической системы Здесь рассмотрим процессы в одной реакционной зоне. Как и для изотермического процесса, анализ процесса в реакторе с теплообменом будем проводить в рамках полученных моделей. [c.134]

    Химико-технологическая система при производстве ПЭНД включает в себя функциональные подсистемы, подобные тем, которые имеются и в случае получения полипропилена. Применяемая аппаратура и режимы обработки суспензии полимера [c.411]

    Уровень и практические возможности плазменной технологии полностью зависят от ее энергетического базиса, т. е. от работоспособности генераторов технологической плазмы (источник электропитания, плазмотрон, системы контроля, управления и автоматизации). Из приведенных выше данных видно, что электродуговые генераторы плазмы по уровню электрической мощности обеспечивают создание крупномасштабных химико-технологических и металлургических процессов мощность плазменного реактора несколько десятков мегаватт, производительность — до нескольких тонн в час. Это в особенности касается процессов экстрактивной металлургии, металлургии и химико-технологических процессов получения конденсированных (дисперсных или компактных) материалов с допустимым уровнем примесей из электродов 10 -Ь 10 %. Коэффициент полезного действия выпрямителей с системой автоматического регулирования тока достигает 0,95 КПД сравнительно мощных электродуговых плазмотронов (не менее 1 МВт) — 0,93. [c.128]


    Основным направлением в повышении энергетической эффективности химических производств является снижение их энергоемкости за счет использования внутренних ресурсов каждой химико-технологической системы (ХТС). Этому благоприятствует создание агрегатов большой мощности, перевод производств на непрерывную технологию, использование топливного потенциала горючих отходов, рациональная организация энерготехнологических агрегатов. Так, при создании агрегатов большой мощности резко снижаются удельные потери тепла для непрерывных производств характерно выделение тепла стабилизированных параметров и постоянное количество энергии, выделяемой в единицу времени сжигание отходов должно быть организовано так, чтобы оно не требовало дополнительных расходов топлива, а само явилось источником получения тепловой энергии. [c.191]

    Подсистема Совокупность состава композиции и свойств исходных ко.м-понентов . Данная совокупность, как и все остальные, представляет неотъемлемую часть общей химико-технологической системы. С одной стороны, она является результатом разработки состава, анализа свойств и подготовки компонентов, а с другой — определяет характер всех последующих этапов получения композиции. Она представляет собой не что иное, как объекты исследования, которыми при анализе смешения являются обрабатываемые материалы. Рассматриваемая система может быть детализирована  [c.191]

    Применение методов кибернетики в химической технологии открывает возможность осуществления системного анализа при исследовании или организации производственного процесса как системы, когда вся информация, полученная, начиная с лабораторных исследований на опытных установках и кончая синтезом химико-технологических систем, последовательно накапливается, обогащается и реализуется в виде алгоритмов для ЭВМ. На последнем этапе, после математического моделирования всей химико-технологической системы, обобщенная и систематизированная информация выдается для использования при ее автоматизированном проектировании. [c.12]

    При синтезе любых химических производств могут быть использованы следующие типы технологических связей между аппаратами последовательный поток (рис. 1Х-2,а), который применяют в блочных химико-технологических системах (например, производство аммиака), а также в случае необходимости повышения эффективности данного технологического оператора (например, для достижения более высокой степени превращения используют каскад химических реакторов) параллельный поток (рис. 1Х-2,б), который применяют в случае, если нужно увеличить мощность системы, а также при параллельном получении полупродуктов Л и В, идущих на производство продукта С обратный поток —рецикл (рис. 1Х-2, в), применяемый для более полного использования сырья или энергии, а также для целей регенерации перекрестный поток (рис. 1Х-2,г), обеспечивающий эффективное использование энергии в системе. [c.432]

    В современных мощных химико-технологических системах (в том числе в производстве аммиака, метанола, серной кислоты) приобретает большое значение наиболее полная утилизация теплоты химических реакций для нагревания поступающего сырья (газов и жидкостей) до температуры начала реакции или для получения товарного водяного пара. Столь же большое значение имеет рациональное использование теплоты сжигания топлива для компенсации эндотермических процессов, а также электрической энергии на транспортировку газов и жидкостей. [c.67]

    Большинство химических производств представляют собой сложные химико-технологические системы (ХТС), являющиеся совокупностью большого числа технологических аппаратов и машин, в которых последовательно протекают технологические операции, необходимые для получения целевых или промежуточных продуктов. [c.82]

    При рассмотрении химико-технологической системы водного хозяйства такой продукцией является как сама потребляемая или отводимая вода, так и продукты, полученные при потреблении воды (с ее участием). [c.6]

    При исследовании или организации производственного процесса как системы вся информация, полученная, начиная с лабораторных исследований на опытных установках и кончая синтезом химико-технологических систем, в строго иерархической последовательности, накапливается, обогащается и реализуется в виде алгоритмов на ЭВМ. Системный анализ позволяет резко сократить сроки промышленной реализации лабораторных разработок. [c.19]

    Используя методы математической статистики, можно получить систему уравнений, связывающих выходные переменные процесса с входными в виде полиномов — уравнений регрессии. Эта система уравнений представляет собой математическое описание процесса. Использование методов математической статистики для описания химико-технологических процессов рассмотрено в главе П. В настоящее время для получения уравнений регрессии используются в основном два метода, проиллюстрированные в примерах П-4 и П- . [c.77]

    На каждом из уровней эксперимент имеет свои особенности, связанные со структурой и характером информационных потоков, математическим и техническим обеспечением и возможной степенью автоматизации. Следует особо подчеркнуть, что выполнение натурных экспериментов помимо всего прочего имеет целью разработку или уточнение математических моделей соответствующих объектов. Во всяком случае, одной из конечных целей исследований химико-технологических процессов как системы является получение данных, необходимых для проектирования промышленной установки (или ее реконструкции) по аппаратурному оформлению, по структуре связей между аппаратами (или группами аппаратов), по структуре системы управления. [c.56]

    Для эффективного решения задач, возникающих на всех уровнях иерархии химического производства, необходимо прежде всего выполнить идентификацию операторов отдельных ФХС, составляющих ХТС, т. е. оценить входящие в них параметры. Это может быть достигнуто либо решением обратных задач с постановкой соответствующих экспериментов (если объектом исследования служит действующее производство), либо априорным заданием ориентировочных значений технологических параметров, используя данные аналогичных производств (при проектировании новых химико-технологических систем). После процедуры идентификации отображение (2) можно считать готовым для изучения свойств ФХС в рабочем диапазоне изменения ее параметров нахождения оптимальных конструктивных и режимных параметров технологического процесса синтеза оптимального управления системой анализа и моделирования поведения ХТС, в состав которой в качестве элемента входит рассматриваемая ФХС и т. п. Реализация перечисленных задач так или иначе связана с решением системы уравнений, соответствующих отображению (2), что равносильно получению явной функциональной связи между переменными у и и либо в аналитической форме конечных соотношений, либо в виде результата численного решения задачи на ЭВМ. Формально это решение представляется в виде соответствующего отображения [c.8]

    Сформулирована цель топологического принципа описания ФХС — создание системы формализации количественного анализа химико-технологических объектов, которая совмещает наглядность структурного представления исследуемого объекта, достоинства аппарата дифференциального и интегрального исчисления и широкие возможности в автоматизации процедур получения и решения уравнений, описывающих ФХС, в режиме диалога исследователь — ЭВМ. [c.101]

    Единая общепринятая теория концентрированных растворов пока отсутствует, что затрудняет рассмотрение с физико-химической и технологической точек зрения всех аспектов статики и кинетики превращений веществ в процессах химико-технологической переработки. Накопленный физико-химический материал по теоретическому обоснованию свойств, структуры, термодинамической оценке параметров компонентов раствора при учете влияния концентрации, химических взаимодействий, температуры и давления позволяет в отдельных случаях достаточно полно оценить статическое состояние, т. е. состояние системы при равновесии. Это имеет большое значение для процессов растворения, кристаллизации, поглощения и выделения газообразных реагентов в многокомпонентных системах, обрабатываемых при получении неорганических веществ. В этой главе рассмотрены некоторые свойства растворов электролитов, важные для технологии. [c.73]

    Оптамнзация промышленного процесса получения формальдегида окяс-.1ите.1ьным дегидрированием метанола на серебряном катализаторе с учетом самоорганизации [86]. Процесс самоорганизации, рассматриваемый на уровне химико-технологической системы, состоит в проявлении кооперативного действия мод и упорядочения, определяемого параметрами порядка [86], при этом образуются диссипативные структуры. Устойчивые состояния соответствуют некоторым точкам в фазовом пространстве координат системы (технологические режимы, конструктивные характеристики аппаратов). Эти состояния будем называть центрами самоорганизации. [c.312]

    Экономический эффект, полученный от организации производственного комплекса (химико-технологической системы, цеха, завода и т. п.) по принципу ГАПС можно, например, опреде-,1нть в виде показателя сокращения приведенных затрат по ( )ормуле  [c.60]

    Высокотемпературные реакторы стоят несколько особняком среди основной массы химических реакторов. Высокотемпературными процессами принято называть процессы химического взаимодействия и фазовые переходы, происходящие 1фи температурах, когда энергообмен целевого продукта химико-технологической системы с окружающей средой протекает с возрастающим участием электромагнитных колебаний (в частности, светового излучения) и корпускулярного излучения. Граница между низкотемпературными и высокотемпературными процессами лежит в интервале 500-700 °С, В промышленности печи используются как для проведения химических реакций, так и для получения продуктов в результате высокотемпературных фазовых переходов (плавления, спекания, возгонки). Чаще всего в печи параллельно протекают все эти процессы, а конструкцию печи 01феделяет целевой процесс. [c.60]

    Применение аппаратов и технологических линий большой единичной моидаости приводит к облегчению автоматизации и управления производством, так как сокращается число аппаратов в химико-технологической системе. Далее, одновременное получение нескольких целевых продуктов обеспечивает более полное использование сырья и облегчает полноту выделения всех продуктов из реакционной смеси, так как при раздельном получении целевых продуктов имелось бы больше побочных продуктов и пришлось бы делить две реакционные смеси, содержащие наряду с целевыми продуктами непрореагировавшее сырье и побочные вещества. [c.265]

    Стохастические модели прогнозируют (рис. 10.5) коррозию химико-технологической системы на основе совокупности статистических данных о процессе в условиях эксплуатации. Чем обширнее информация о характере влияния отдельных факторов и больше число аппаратов и коммуникаций химико-технологической системы учтено при анализе, тем точнее будут полученные результаты. Очевидна и сложность реализации схемы прогностического моделирования стохастических методов по сравнению с детерминированными методами. Трудности моделирования коррозионного прогноза стохастическим методом заключаются не только в получении обширной информации о влиянии внешних и внутренних параметров химико-технологической системы на скорость и итог коррозии, в анализе и обработке данных, но и в том, что практически невозможно проследить логическую причинную связь явлений, объективно существующую при коррозионном изменении состояния металла. Достоверность результатов прошоза стохастических объектов уменьшается из-за снижения точности прогноза с увеличением времени от предсказания до момента сравнения и корректировки коррозионного прогноза. В меньшей степени этот недостаток присущ регрессивным моделям, полученным с использованием методов планирования эксперимента. [c.185]

    Эффективным методом является создание и эксплуатация энерготехнологических агрегатов. В них можно утилизировать энергию дымовых газов, получаемых в результате термической обработки газов, отходящих с производств органического синтеза и связанного азота. В качестве товарной продукции энерготехнологических агрегатов на сторону отправляют пар или электроэнергию. В некоторых случаях без создания энерготехнологических агрегатов была бы нерентабельна эксплуатация всей химико-технологической системы. Нанример, при получении малеинового ангидрида из бутана за счет использования вторичных энергоресурсов удается снизить себестоимость продукта на 25% [25, что делает этот метод конкурентосиособным по сравнению с методом производства малеинового ангидрида из бензола. [c.21]

    Все перечисленные схемы являются вариантами совмещенной схемы и не допускают одновременного выпуска нескольких продуктов. Вместе с тем наиболее существенной особенностью истинных мобильных схем является возможность одновременного получения нескольких (не мен1бе двух) продуктов. Для того, чтобы это стало возможным химико-технологическая система должна содержать некоторый избыток оборудования, [c.75]

    Система СППИ включает следующие библиотеки-каталоги и библиотеки-справочники, в которых хранится вся внутренняя и внешняя информация для разработки проекта библиотеку-справочник для поиска семейств и родственных химических соединений библиотеку-справочник возможных маршрутов химических превращений для получения некоторого целевого продукта библиотеку-каталог эксплуатационных характеристик оборудования, ГОСТ, технических условий и нормалей на оборудование, сырье и продукты химических производств библиотеку-справочник характеристик надежности, технологических и технико-экономических показателей функционирования действующих химических производств библиотеку-справочник по научно-технической информации библиотеку-справочник физико-химических свойств веществ и материалов химических производств библиотеку-справочник для расчета технико-экономических показателей эффективности химических производств библиотеку-каталог типовых проектных решений по аипаратуриому оформлению химико-технологических процессов, по компоновке химических производств, по разработке АСУТП библиотеки-каталоги контрольно-измерительных приборов, электронного и пневматического оборудования для АСУТП библиотеку-архив технической документации и т. д. [c.118]

    Существенный аспект топливно-энергетической проблемы — это повыщение эффективности использования топливных ресурсов, в частности возможно более полное использование всех видов энергии. Известно, что химическая промышленность и смежные с ней отрасли являются крупнейшими потребителями тепловой и электрической энергии. В последние годы особенно большое внимание уделялось снижению всех видов энергозатрат в химико-технологических процессах — прежде всего уменьшению теплопотерь и наиболее полному использованию реакционной теплоты. Одним из путей повышения энергетической эффективности химико-технологических процессов служит химическая энерготехнология, т. е. организация крупномасштабных химико-технологических процессов с максимальным использованием энергии (прежде всего теплоты) химических реакций. В энерготехнологических схемах энергетические установки — котлы-утилизаторы, газовые и паровые турбины составляют единую систему с химико-технологическими установками химические и энергетические стадии процесса взаимосвязаны и взаимообусловлены. Химические реакторы одновременно выполняют функции энергетических устройств, например вырабатывают пар заданных параметров. Энерготехнологические системы реализуются прежде всего на базе агрегатов большой мощности — крупнотоннажных установок синтеза аммиака, синтеза метанола, производства серной кислоты, азотной кислоты, получения карбамида, аммиачной селитры и т. д. [c.37]

    Трудности, с которыми сталкиваются физики, химики и тexнoJюги при анализе существа физико-химических явлений в технологических процессах, заключаются в различном характере их описания средствами названных выше областей знания. Физики интересуются фазовыми превращениями химики—условиями и механизмом протекания химических реакций в нефтяных системах технологи-нефтепереработчики заняты поиском технических решений для увеличения выхода и качества или улучшения эксплуатационных свойств нефтепродуктов технологи-промысловики ищут способы воздействия на пласт с целью повышения дебитов скважин технологи-транспортники решают технические проблемы транспортировки высоковязких нефтей инженеры-экологи предлагают технические способы защиты окружающей среды от вредного воздействия нефтяных загрязнений. Кажущаяся разорванность технологического цикла, связанного с добычей, транспортировкой, переработкой нефти и применением нефтепродуктов, а также с сопровождающими эти процессы экологическими проблемами, привела к той ситуации, что по существу одни и те же физико-химические явления изучаются различными технолога-ми-специалистами. Например, фазовый переход, связанный с выделением твердых углеводородов, представляет собой одну из проблем при добыче и транспортировке нефти этот же переход лежит в основе технологического процесса получения низкозастывающих масел — депарафииизации он же осложняет эксплуатацию дизельных топлив (табл. 1). [c.178]

    Непосредственная очистка твердофазных ОСЧВ малоэффективна и основным методом их получения является синтез с использованием особо чистых жидкофазных реагентов. Системный анализ широкой номенклатуры производств ОСЧВ позволил выявить (рис. 1) пять наиболее общих химико-технологических подсистем (ХТПС).Подсистемой 1-го уровня является комплекс процессов синтеза основных жидкофазных исходных реагентов. Для оксидов - это алкоксиды, хлориды и растворы солей соответствующих элементов. Для получения их нами используются процессы физического растворения, а также реакционные процессы в системах "жидкость - газ. [c.99]


Смотреть страницы где упоминается термин Химико-технологическая система ХТС получения: [c.12]    [c.12]    [c.10]    [c.178]    [c.198]    [c.13]    [c.387]    [c.11]    [c.30]    [c.21]    [c.151]   
Основы химической технологии (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Система получение

Системы Системы химико-технологические

Системы технологические

Химико-технологическая система



© 2024 chem21.info Реклама на сайте