Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроорганизмы использование в биотехнологии

Рис. 12.1. Возможности использования биотехнологии. Представленная классификация условна, различные направления могут перекрываться. Важным методом биотехнологии является генная инженерия. Ее применяют, если нужно улучшить микроорганизмы, растения или животных. Роль генной инженерии существенно возрастет в XXI в. . Рис. 12.1. <a href="/info/528333">Возможности использования</a> биотехнологии. <a href="/info/1674927">Представленная классификация</a> условна, <a href="/info/488311">различные направления</a> могут перекрываться. <a href="/info/191762">Важным методом</a> биотехнологии <a href="/info/1868845">является генная</a> инженерия. Ее применяют, если нужно улучшить микроорганизмы, растения или животных. <a href="/info/1325165">Роль генной</a> инженерии существенно возрастет в XXI в. .

    В приведенных примерах из сравнительно простых веществ — субстратов питательной среды — с помощью микроорганизмов синтезируются сложные органические вещества. Последнее время при помощи микроорганизмов практикуют различные превращения молекул органических веществ — микробиологическую трансформацию. Отбирая особые культуры микроорганизмов (в специальных каталогах ферментативных реакций культур микроорганизмов указано, какие биохимические реакции осуществляет данная культура) можно провести самые различные химические реакции — окисление и восстановление, фосфорилирование, ами-нирование, специфический гидролиз и другие реакции, провести которые химическим путем очень трудно, а иногда и невозможно. В качестве примера можно привести превращение О-сорбита в Ь-сорбозу. Микробиологическая трансформация открыла большие возможности получения препаратов стероидов. Этот метод широко используется для промышленного получения кортизона, гидрокортизона, преднизолона и др. С помощью микробиологической трансформации можно превращать продукты химического синтеза в другие необходимые для народного хозяйства вещества. В последнее время интенсивно развивается новое направление в биотехнологии — иммобилизация на специальных носителях ферментов или клеток для продления срока их использования. [c.5]

    Аэробная переработка стоков —это самая обширная область контролируемого использования микроорганизмов в биотехнологии. Она включает следующие стадии 1) адсорбция субстрата на клеточной поверхности 2) расщепление адсорбированного субстрата внеклеточными ферментами 3) поглощение растворенных веществ клетками 4) рост и эндогенное дыхание 5) высвобождение экскретируемых продуктов 6) выедание первичной популяции организмов вторичными потребителями. В идеале это должно приводить к полной минерализации отходов до простых солей, газов и воды. Эффективность переработки пропорциональна количеству биомассы и времени контактирования ее с отходами. [c.249]

    С каждым годом все большее число разнообразных процессов микробиологического синтеза реализуется в промышленных условиях, Промышленная биотехнология становится новым перспективным направлением, открывающим необозримые горизонты использования продуктов биосинтеза микроорганизмов в народном хозяйстве. Увеличивается число биохимических заводов и комбинатов по производству уже освоенной продукции микробиологического синтеза — ферментных препаратов, витаминов, кормовых антибиотиков, аминокислот, микробиологических препаратов для борьбы с вредителями растений, кормовых дрожжей и др. Широким фронтом ведутся исследования по получению и технологии производства новых биологически активных препаратов, разрабатываемых с использованием современных достижений молекулярной генетики и генной инженерии. К перспективным задачам промышленной биотехнологии относится также реализация микробиологических процессов, направленных на решение энергетической проблемы, в том числе производство биогаза, топливного этанола, метана, топливного водорода с помощью фотосинтезирующих микроорганизмов и др. [c.3]


    БИОТЕХНОЛОГИЯ — использование культур клеток микроорганизмов, растений и животных в научно-практических целях включает в себя генную и клеточную инженерию. [c.398]

    В пищевой промышленности в производстве ряда продуктов и напитков применяют ферменты. Традиционно источником ферментов служило сырье растительного и животного происхождения. Успехи микробиологической промышленности позволили перейти в последние 20—25 лет к широкому использованию ферментов, полученных методами биотехнологии на основе дрожжей, грибов и микроорганизмов. В производстве пищевых продуктов в настоящее время используют около 10 типов таких ферментов, в их числе амилоглюкозидазы, глюко-изомеразы, бактериальные амилазы, пектиназы, реннины и др. В 1985 г. в странах капиталистического мира на долю пищевой промышленности приходилось 52% общего потребления ферментов, вырабатываемых из нетрадиционного сырья, что составило 260 млн. дол. [c.217]

    Крупные открытия в науке обычно делаются при разработке фундаментальных проблем. Мы разделяем мнение большинства врачей о том, что последние достижения биотехнологии, нашедшие применение в самых важных отраслях медицины, оказывают и будут оказывать революционизирующее воздействие на диагностику, лечение и понимание основ патологии многих тяжелых заболеваний. Ориентируясь на читателей, не имеющих медицинской подготовки, мы расскажем о том, какую важную роль играют в клинической практике некоторые новые подходы, а также широко используемые методы диагностики. Мы по необходимости ограничимся лишь немногими примерами, но читатель может без труда дополнить их множеством других использованием в терапии белков, которые можно синтезировать при помощи видоизмененных методами генетической инженерии микроорганизмов, применением моноклональных антител, ферментов и т. д. Мы не обсуждаем использующиеся при этом технологические процессы сколько-нибудь подробно (о них речь идет в других главах) исключение составляет лишь раздел о синтезе инсулина человека дело в том, что инсулин был первым белком, полученным с помощью технологии рекомбинантных ДНК и испытанным на людях, а также первым или одним из первых) препаратом такого рода, нашедшим применение в клинике. [c.325]

    При издании книги Введение в биотехнологию на русском языке текст несколько переработан и дополнен новейшими данными. Дана характеристика новых видов сырья, применяемого для приготовления питательных сред для культивирования микроорганизмов. Показана возможность производства богатой белком микробной биомассы не только на средах, содержащих растворимые углеводы, но и на средах, содержащих углеводороды нефти, природного газа, этанол, целлюлозу сельскохозяйственных отходов и др. Расширен раздел о получении ферментных препаратов, в частности показаны принципы иммобилизации ферментов и клеток микроорганизмов, приведены новые данные по микробиологической трансформации органических соединений. Раздел об использовании микробиологических процессов для защиты окружающей среды дополнен последними работами в области утилизации навоза. [c.6]

    Биоповреждения — неизбежное следствие важнейшей роли микроорганизмов в круговороте элементов в биосфере. Проявления биоповреждений весьма многообразны от порчи пищевых продуктов до загрязнения смазочных масел и топливных систем, разрушения бетона и развития электрохимических процессов коррозии под влиянием микроорганизмов. Биотехнология поможет создать новые методы борьбы с биоповреждениями благодаря более глубокому пониманию лежащих в их основе процессов. На этой базе могут быть созданы новые биотехнологические процессы. Примером такого рода служит использование ферментов в пищевой промышленности. [c.26]

    В настоящее время к биотехнологии относят отрасли производств, связанные с использованием материалов биологического происхождения. В качестве примеров можно назвать получение органических кислот и растворителей, антибиотиков, витаминов, ферментов, полисахаридов, вакцин и сывороток, пищевого и кормового микробного белка, а также микробиологический синтез стероидов и др. В каждом из этих производств применяют специальные виды и штаммы микробов, наиболее полно проявляющих те или иные свойства в конкретных условиях соответствующей технологии. Эти микроорганизмы обладают многими признаками, общими для представителей рода и семейства. [c.113]

    К этому направлению научно-технического прогресса следует относиться особенно осторожно. Существует мнение, что биотехнология может внести решающий вклад в решение глобальных проблем человечества. Однако даже с помощью обычной гибридизации — близкородственного скрещивания — получают, по сути, уродов, пусть и с полезными для цивилизации свойствами. С помощью же генной инженерии оказалось возможным создавать структуры ДНК, которых никогда не существовало в биосфере (в химии аналог — ксенобиотики) генная инженерия, таким образом, разрушает барьер, разрешающий генетический обмен только в пределах одного биологического вида или близкородственных видов, позволяет переносить гены из одного живого организма в любой другой. Этот факт открывает перспективы создания, в частности, микроорганизмов и растений с полезными для цивилизации свойствами и таит в себе колоссальную опасность этического и экологического характера. Наиболее известный случай здесь — синтез и использование гормонов роста в животноводстве, приведшие к так называемому коровьему бешенству . [c.248]


    Генетическая инженерия — важнейший прогрессивный способ изменения генетической программы организма в целях создания высокопродуктивных штаммов промьпштенных микроорганизмов. Успехи современной генетической инженерии сушественно влияют на промышленную биотехнологию. Яркий пример больших возможностей генетической инженерии — создание во ВНИИ генетики и селекции промышленных микроорганизмов штамма Е. oli для получения треонина. В результате были изменены не только регуляторные свойства фермента аспартаткиназы, но и питательные потребности штамма. Введение в геном бактерии нового гена обеспечило бактерии возможность использования в качестве источника углерода сахарозу, основного дисахарида традиционного промышленного сырья — свекловичной мелассы. Перечисленные манипуляции наряду с амплификацией плазмид, содержащих оперон треонина, позволили значительно увеличить производительность штамма бактерии и получить за 40 ч ферментации 100 г L-треонина на 1 л культуральной жидкости. Учитывая исключительные способности штамма Е. соН к сверхсинтезу L-треонина, японская фирма Адзиномото приобрела в 1982 г. лицензию на использование российского штамма — продуцента треонина для организации собственного производства. [c.50]

    Поиск оптимального варианта ускоренной рекультивации нарушенных земель целесообразен в направлении соверщенствования вариантов биотехнологии при нейтрализации почвогрунтов с использованием микроорганизмов. [c.166]

    В соответствии с определением Европейской Федерации Биотехнологов (ЕФБ, 1984) биотехнология базируется на интегральном использовании биохимии, микробиологии и инженерных наук в целях промышленной реализации способностей микроорганизмов, культур клеток тканей и их частей. Уже в самом определении предмета отражено его местоположение как пограничного, благодаря чему результаты фундаментальных исследований в области биологических, химических и технических дисциплин приобретают прикладное значение. Биотехнология непосредственно связана с общей биологией, микробиологией, ботаникой, зоологией, анатомией и физиологией, биологической, органической, физической и коллоидной химией, иммунологией, биоинженерией, электроникой, технологией лекарств, генетикой и другими научными дисциплинами [2,3]. [c.4]

    Наряду с расширением спектра осваиваемых процессов микробиологического синтеза для промышленной биотехнологии характерно увеличение мощностей биохимических предприятий, их укрупнение с использованием агрегатов большой единичной мощности. Это присуще ведущей отрасли микробиологической промышленности, обеспечивающей выпуск белковой биомассы микроорганизмов с целью ликвидации белкового дефицита в сельском хозяйстве. Использование в качестве субстрата для получения белковой биомассы микроорганизмов новых видов сырья, таких, как и-парафины, природный газ, синтетический этанол, метанол, позволяет создавать предприятия большой единичной мощности до 300 тыс. т и более биомассы в год. Такие биохимические комбинаты представляют собой сложные системы, насыщенные разнообразными технологическими аппаратами, взаимосвязанными между собой и действующими в едином технологическом режиме. [c.3]

    Возникновение и быстрое развитие биотехнологии, приобретающей все большее значение в народном хозяйстве, базируется прежде всего на использовании микроорганизмов как продуцентов множества полезных веществ, как-то кормового белка, многих ферментов, антибиотиков, стероидных препаратов, аминокислот, витаминов и других. Возможности микроорганизмов в этом отношении чрезвычайно велики. На использовании микроорганизмов основаны методы генетической инженерии, позволяющие создавать новые штаммы, обладающие полезными свойствами и образующие ряд важных веществ. [c.5]

    В сульфитном щелоке присутствует метанол. Среднее массовое содержание его при использовании древесины ели составляет 0,4 кг/м , а при варке древесины лиственных пород доходит до 0,7 кг/м В определенной дозировке метанол начинает проявлять ингибирующее действие на культивируемые в биотехнологии сульфитного щелока микроорганизмы. [c.228]

    Ферменты, т.е. белки, которые действуют как катализаторы в биохимических реакциях, являются главным объектом исследований в еще одной области биотехнологии и химии. Способность рекомбинантной ДНК управлять синтезом ферментов, безусловно, расширит применение микроорганизмов в биокатализе. Во-первых, появится возможность производить почти все природные ферменты, причем стоимость такого производства будет невелика. Во-вторых, и это еще более заманчиво, открывается путь к усовершенствованию современных методов получения биокатализаторов, не существующих в природе, — путь, основанный на использовании тончайших синтетических приемов генной инженерии. Рентгеноструктурные методы позволили химику заглянуть в детали трехмерной структуры некоторых ферментов. Необходимы дальнейшие химические исследования для уточнения наших знаний о связи между химической [c.121]

    Традиционные способы использования микроорганизмов при производстве различных сортов пива, вина и сброженных продуктов совершенствовались тысячелетиями, и все же до недавнего времени в них было больше искусства, чем технологии. Только с развитием микробиологии мы получили возможность контролировать качество продуктов, добились большей надежности и воспроизводимости процессов ферментации и научились получать новые типы продукции (например, БОО и вкусовые добавки). Сегодня нам еще трудно с уверенностью говорить о том, каких успехов удастся достичь в этой области с помощью биотехнологии, но самые общие тенденции вырисовываются довольно ясно. Наиболее успешными представляются два взаимосвязанных направления. Во-первых, на смену традиционным способам производства пищи постепенно придут биореакторы, в которых будут расти клетки животных или растений или же микроорганизмы. Дело в том, что выход продукции при использовании ферментеров или биореакторов может быть существенно выше, чем в сельском хозяйстве идущие в них процессы гораздо более интенсивны. Развитию этого направления способствует и все возрастающая конкуренция за имеющиеся земельные ресурсы. Во-вторых, эта альтернативная технология будет становиться все более производительной благодаря использованию методов генетической инженерии, которые позволяют получать улучшенные линии клеток и штаммы микроорганизмов. [c.23]

    Европейская биотехнологическая федерация определяет биотехнологию как совместное использование биохимии, микробиологии и химической технологии для технологического (промышленного) применения полезных качеств микроорганизмов и культур тканей. Экологическая биотехнология — это специфическое применение биотехнологии для решения проблем окружающей среды, включая такие, как переработка отходов, борьба с загрязнениями и соединение биотехнологических методов с небиологическими технологиями. Исходя из этого определения, неверно было бы утверждать, что эта книга исчерпывающе освещает данную тему, она не предназначена ни для этого, ни для того, чтобы служить пособием по соответствующему спецкурсу. Это, по существу, только перечень основных направлений деятельности, которые могут быть отнесены к сфере экологической биотехнологии, а также оценка тех принципов, которые являются основой для организации таких процессов. Борьба с загрязнениями — важная часть природоохранной деятельности и в силу этого обсуждается более подробно. Например, существует важная современная проблема различных загрязнений сельскохозяйственных угодий в результате человеческой деятельности. Поэтому предлагаются решения и попытки решения проблемы загрязнения почвы, вместе со сведениями о переработке стоков различными способами. Уничтожение отходов с помощью захоронения также является потенциальным источником загрязнения окружающей среды, поэтому в книге обсуждаются проблемы и непредвиденные трудности такого способа уничтожения твердых отходов. Однако экологическая биотехнология, по своей сути, должна рассматривать все аспекты процесса, в том числе возможность получения биогаза при захоронении отходов. [c.6]

    Этим, пожалуй, и ограничивается использование микроорганизмов в переработке белков. Возможности современной биотехнологии в этих производствах невелики, за исключением сыроделия (разд. 3.2.2). Другое дело — выращивание и сбор микробной массы, перерабатываемой в пищевые продукты здесь биотехнология может проявить себя во всей полноте. [c.116]

    Большое значение приобретает в настоящ,ее время модификация ФАВ. Продукты биосинтеза могут быть превраш ены в более активные вещества методами химического синтеза. При этом, помимо дополнительного получения многообразных препаратов, появляется возможность синтезировать, например, антибиотики, к которым патогенные микроорганизмы еще не способны проявить резистентность. Продукты химического синтеза также могут быть превращены в новые, еще более активные вещества на основе использования процессов биосинтеза и методов биотехнологии. [c.7]

    Позднее был осуществлен синтез отдельных представителей и фрагментов белков, нуклеиновых кислот, липидов, углеводов. Это позволило не только установить строение, но и объяснить функциональную активность биомолекул. Параллельно с развитием тонкого органического синтеза был заложен фундамент нового подхода к получению сложных органических соединений, основанный на использовании микроорганизмов, а также культур тканей,— биотехнологии. Сочетание методов органического и биологического синтезов позволяет получать ранее практически недоступные сложные органические вещества. [c.5]

    Новейшая биотехнология (биоинженерия) — это наука о ген-но-инженерных н клеточных методах и технологиях создания и использования генетически трансформированных (модифицированных) растений, животных и микроорганизмов в целях интенсификации производства и получения новых видов продуктов различного назначения. [c.15]

    Одним из важных направлений современной биотехнологии является получение на основе культивирования микроорганизмов и использование в сельском хозяйстве различных ферментных препаратов, которые могут применяться в процессе приготовления кормов для сельскохозяйственных животных как добавки к кормам в целях улучшения их усвояемости, а также в ветеринарии для профилактики и лечения желудочных и паразитарных заболеваний. [c.290]

    Процессы биотрансформации органических продуктов, занимающие важное место в биотехнологии, успешно реализуются с использованием иммобилизованных бйокатализаторов. Иммобилизованными считают ферменты или клетки микроорганизмов, движение которых в пространстве частично или полностью ограничено. Иммобилизация представляет большой практический интерес, поскольку позволяет обеспечить легкое отделение биокатализатора от реакционной среды, способствует повьппе-нию устойчивости и увеличению времени его активной работы. На практике для этой цели применяются два основных метода включение биокатализатора в ограниченное пространство геля или капсулы либо его ковалентное связывание или физическая сорбция на инертных адсорбентах. [c.124]

    Движения защитников природы и человека от использования генетически модифицированных растений, животных и микроорганизмов становятся заметной общественной силой, которая способна оказать отрицательное влияние на темпы развития биотехнологии и прежде всего ее стратегического ядра — биоинженерии как науки и резко сократить масштабы экономического и других видов полезных и важных эффектов от применения их результатов. [c.401]

    При получении ряда аминокислот химико-ферментативными способами используют энзимы, принадлежащие к разным классам. Эти процессы могут бьггь как одностадийными (конверсии), так и многостадийными. Источником ферментов для большинства процессов служат энзимы микроорганизмов — как индивидуальные, так и их природные смеси, содержащиеся в интактных (не растущих), высушенных и лизированных клетках, клеточных экстрактах и, наконец, в препаратах иммобилизованных клеток и ферментов. Использование иммобилизованных ферментов в биотехнологии будет рассмотрено в гл. 4. [c.51]

    С развитием биотехнологии возрастает интерес к использованию ферментов и микроорганизмов как катализаторов химических превращений. Особый интерес в этом плане представляет возможность проведения реакций с высокой степенью стереоселективности с целью получения оптически активных соединений. И хотя уже накоплен большой практический опыт применения ферментов и клеток в этих целях, область приложения и потенциальные возможности метода намного шире. В частности, результаты микробиологических реакций трудно предсказуемы, и в этой связи практически всегда требуется мелкомасштабный скриннинг. Такие исследования раньше тормозились из-за отсутствия необходимого метода контроля за прохождением стерео-селективной реакции. Теперь с развитием хиральной хроматографии появилась возможность определять очень простым способом точный энантиомерный состав в пробах, взятых в любой момент прохождения ферментативной реакции. Площадь хроматографического пика измеряется электронным интегратором, связанным с детектором, что позволяет следить за прохождением реакции и ее стереохимией на пробах очень небольшого объема. [c.210]

    Если в области очистки бытовых и промышленных сточных вод, интенсификации рудо- и углеобогащения и нефтедобычи флокулянты успешно используются уже более четверти века, то в промьппленной микробиологии они применяются недавно и в существенно меньших масштабах. В этой отрасли сформировалось по меньшей мере два направления использования флокулянтов. Важнейшее из них - концентрирование и обезвоживание культуральных жидкостей. Другая обширная сфера их применения - очистка сточных вод микробиологических, пищевых и родственных предприятий. Среди факторов, сдерживающих интенсивное использование флокулянтов в биотехнологии, следует отметить ббльшую сложность биологических коллоидных систем по сравнению с органическими или неорганическими дисперсиями культуральные жидкости характеризуются существенно большим морфологическим разнообразием и сложностью состава (см. гл. 1). Кроме того, ряд традиционных методов концентрирования находит ограниченное применение ввиду их сильного деструктирующего воздействия на живые клетки микроорганизмов (см. гл. 2). [c.63]

    Книга состоит из четырех частей. В первой из них четко и ясно изложены основы молекулярной биологии, во второй речь идет о молекулярной биотехнологии микроорганизмов, в третьей - о биотехнологии эукариотических систем, Б том числе человека (молекулярная генетика человека и генная терапия). Особый интерес для российского читателя представляет четвертая часть, посвященная контролю и патентованию в области молекулярной биотехнологии. Эти вопросы почти не затрагиваются ни в учебниках, ни в образовательном процессе в нашей стране, хотя в биотехнологии, как и в любой прикладной науке, новые разработки дают дивиденды только в том случае, когда они защищены патентом. Авторы обсуждают законодательную базу использования генноинженерных продуктов в пищевой и фармацевтической промышленности, применения рекомбинантных организмов в сельском хозяйстве, нормативные акты, относящиеся к предварительным испытаниям этих организмов, требования, предъявляемые к ним при крупномасштабном применении. Детально рассматриваются правила патентования впервые секвениро- [c.5]

    Микробиотехнология, или микробная биотехнология базируется на интегрированном использовании микробиологии, биохимии и инженерных наук. с целью реализации потенциальных способностей микроорганизмов в технике и промышленном производстве. По сути своей микробиотехнология тождественна промышленной (технической) микробиологии. Ее объектами являются микробы-вирусы (включая вироиды и фаги), бактерии, грибы, лишайники, протозоа (см. главу 2). В ряде случаев биообъектами являются первичные метаболиты микробного происхождения — ферменты, каталитическая активность которых лежит в основе инженерной энзимологии. [c.374]

    Одна из групп метанотрофов — метилотрофные бактерии — имеет большие перспективы для использования в биотехнологии. Прежде всего, они привлекают к себе внимание как продуценты белка. Такие микроорганизмы характеризуются высокой скоростью роста, их можно выращивать, используя природный газ, большую часть которого составляет метан. Преимущества метилотрофов как источников белка состоят не только в сравнительно низкой стоимости получаемых белково-витаминных концентратов, но и в достаточно больших запасах субстратов, на которых они могут расти. В 1960-80-е годы в нашей стране были созданы предприятия по производству микробного кормового белка, которые размещались вблизи нефтеперерабатывающих заводов. В качестве сырья использовались жидкие очищенные парафины, нефтяные дистилляты, природный газ и др. [c.151]

    Книга, написанная коллективом авторов (Англия, США, Швейцария), пред-, ставляет собой учебник по биотехнологии, освещающий как новые, так и традиционные отрасли промышленности, основанные на применении микроорганизмов. Рассмотрено использование микроорганизмов для цолучения биотоплива, пц-щевых продуктов и биоматериалов, а также применение биотехнологии в химической промышленности, медицине, сельском хозяйстве и для переработки отходов. Особое внимание уделено связи биотехнологии и химической технологии. [c.4]

    До недавнего времени биотехнология использовалась в пи -щевс промышленности с целью усовершенствования освоенных про1 ессов и более умелого использования микроорганизмов, но будущее здесь принадлежит генетическим исследованиям по созданию более продуктивных штаммов для конкретных нужд , внедрению новых методов в технологии брожения. Таким путем мы сможем повысить выход и качество выпускаемой продукции и освоить производство новых ее разновидностей. [c.93]

    Зрелище возделанных полей стало для нас настолько привычно, что мы не замечаем искусственности такого пейзажа. Между тем очевидно, что деятельность живущих на Земле людей очень сильно сказывается на ее облике, ибо с незапамятных времен они выращивают на ней растения и содержат домашних животных. Фермеров можно считать предшественниками современных иотехнологов, так как они постоянно занимались улучшением пород животных. Впрочем, поскольку делалось это в основном эмпирически, называть фермеров биотехнологами было бы все же неправильно. Ведь биотехнология — это целенаправленное и научно обоснованное использование биологических процессов при производстве, переработке и использовании сырья. На практике многие из таких процессов идут при участии микроорганизмов. [c.350]

    Попадание фосфатов в реки и озера является главной причиной их эвтрофикации. Фосфаты могут быть удалены химическим осаждением с помощью извести [717], но это приводит к удлинению процесса на лишнюю стадию и его удорожанию. Можно удалять фосфаты и биологическим способом 718], однако еще недостаточно исследовано, насколько этот процесс надежен и поддается управлению. Если желаемой надежности и управляемости не удастся достигнуть, то биотехнологам следует поискать другие поверхностно-активные вещества, так как фосфаты попадают в сточные воды в основном с детергентами. Ряд микроорганизмов (например, No ardia erythropolis) синтезируют поверхностно-активные вещества [719, 720], но использование таких соединений в промышленных целях находится еще в зачаточном состоянии. [c.341]

    Проблеме вли5шия различных факторов на флотацию и возможностям ее практического использования посвящена значительная часть данной книги. При этом большое внимание уделено физико-хи-мическим аспектам флотации микроорганизмов активного ила [1 -22]. Кроме того, рассмотрены вопросы удаления тяжелых металлов из отработанных водных потоков. Проблемы биологической очистки сточных вод, отделения активного ила, его последующего сгущения и термического обезвоживания рассмотрены с учетом проблем промышленной биотехнологии, в частности глубинного культивирования микроорганизмов на жидких средах. Такой подход, по нашему мнению, оправдан, так как проблемы биологической очистки сточных вод являются частью общих проблем промышленной биотехнологии и их изложение должно быть совместным. [c.4]

    Развитие биотехнологии во всем мире происходит ускоренными темпами. Это связано, в частности, с необходимостью получения различных медицинских препаратов, а также пищевых и кормовых добавок [16]. Кроме того, биотехнологические методы позволяют решить проблемы охраны окружающей среды. Например, использование микроорганизмов активного ила - наиболее распространенный способ очистки сточных вод. Образующиеся осадки сточных вод можно также эффективно утилизировать с помощью микроорганиз-мов-анаэробов путем сбраживания этих осадков и получения газообразного метана и минерализованных осадков. Все большее распространение получает и очистка воздуха с использованием селективных штаммов микроорганизмов. [c.5]

    Микроорганизмы чрезвычайно разнообразны и представляют огромный потенциал для использования человеком. В подходящих условиях они быстро растут и размножаются, потребляя и производя широкий спектр химических соединений. Именно эта многосторонность и делает их такими полезными. С помошью генной инженерии их можно даже заставить производить не свойственные им полезные продукты, например инсулин. И хотя использование микроорганизмов человеком, по-видимому, еще только начинается, успехи в этой области уже достигнуты немалые. Применение микроорганизмов и других биологических объектов на пользу человека можно охарактеризовать одним словом — биотехнология. [c.39]

    В связи с возможной трансформацией бактерий желудочно-кишечного тракта вернемся к гену прШ, вызываюш ему устойчивость к антибиотику, пусть и устаревшему. Вероятность его передачи из пиш и микробам желудочно-кишечного тракта оценивается примерно так же, как и вероятность ГПГ от растений к бактериям почвы (правда, пока пиш у готовят и переваривают, молекулы ДНК испытывают много разрушающих воздействий механические, термические, ферментативные, так что в итоге уцелеть перенесенному гену в желудке трудно). Тем не менее в ряде руководств и правил, действующих в генной инженерии, учитывают как возможный перенос генов в микроорганизмы желудочно-кишечного тракта, так и свойства белков — продуктов этих генов. Так, в руководстве Использование устойчивых к антибиотикам генов-марке-ров в трансгенных растениях , выпущенном в 1998 г. специальным ведомством США, оценивающим пищевую безопасность продуктов, указано, что продукт гена прШ (фермент неомицин-фосфотрансфераза) нетоксичен и не вызывает аллергии и что употребление в пищу сырых ГМ-томатов, содержащих этот ген, не влияет на терапию с применением канамицина или хожих антибиотиков, например, неомицина (исследование проводили на томатах, но результаты применимы и, скажем, к картофелю — если кто-то любит картошку сырой). Там же отмечено, что наличие упомянутого фермента в кормах безопасно для скота. В итоге сделан вывод о том, что присутствие в ГМ-растениях гена устойчивости к канамицину и вырабатываемых под его контролем белков не вызывает опасений с точки зрения эпидемиологии. Аналогичные выводы содержатся и в подготовленном в 2001 г. докладе Европейской федерации по биотехнологии. [c.85]

    Почти два десятилетия активной работы биотехнологов в селекционных и биотехнологических центрах страны позволили получить сотни и тысячи регенерантов растений, в том числе десятки и сотни с ценными свойствами повышенной устойчивостью к засухе, высоким и низким температурам, засолению, опасным грибковым, бактериальным и вирусным заболеваниям, повышенной кислотности почвы. На их основе получены новые ценные сорта ярового ячменя во ВНИИ центральных районов Нечерноземной зоны и НИИ Северо-Востока яровой пшеницы — в НИИ Юго-Востока озимой пшеницы — в Краснодарском НИИХ клевера и люцерны — во ВНИИ кормов, сахарной свеклы — во ВНИИСХ, картофеля — во ВНИИ картофельного хозяйства плодовых культур во ВНИИ генетики и селекции плодовых растений. Всероссийском селекцион-но-технологическом институте садоводства и питомниководства. В Госу-дарственный реестр внесены первые отечественные сорта зерновых и других культур, полученные отечественными селекционерами с использованием линий, созданных на основе биотехнологических методов гаплоидной и клеточной селекции, соматической гидрадизации и др. В России, как и во многих других странах мира, впервые создана правовая база для осушествления генно-инженерных и других биотехнологических работ с использованием в производстве новых трансформированных генотипов растений, животных и микроорганизмов. Приняты и действуют законы О государственном регулировании в области генно-инженерной деятельности , О селекционных достижениях , О племенной работе , О семеноводстве и др. [c.425]

    Биотехнология классическая — наука о методах и технологиях производства, хранения и переработки сельскохозяйственной и другой продукции с использованием обычных, нетрансгенных растений, животных и микроорганизмов в природных (естественных) и искусственных условиях. [c.459]


Смотреть страницы где упоминается термин Микроорганизмы использование в биотехнологии: [c.98]    [c.29]    [c.172]    [c.254]    [c.77]   
Биология Том3 Изд3 (2004) -- [ c.62 , c.63 , c.64 , c.65 , c.66 , c.67 , c.68 , c.69 , c.70 , c.71 , c.72 , c.73 , c.74 , c.75 , c.76 , c.77 , c.78 , c.79 , c.80 , c.86 , c.87 , c.88 , c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Биотехнология



© 2025 chem21.info Реклама на сайте