Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферментация периодическая

Рис. 16.3. Кривая роста бактериальной культуры при периодической ферментации. 1 — лаг-фаза, 2 - фаза ускорения, 3 — экспоненциальная фаза, 4 — фаза замедления, 5 - стационарная фаза, 6 - фаза отмирания. Рис. 16.3. <a href="/info/103820">Кривая роста</a> <a href="/info/1345580">бактериальной культуры</a> при периодической ферментации. 1 — лаг-фаза, 2 - фаза ускорения, 3 — <a href="/info/1345615">экспоненциальная фаза</a>, 4 — <a href="/info/1047183">фаза замедления</a>, 5 - <a href="/info/103820">стационарная фаза</a>, 6 - фаза отмирания.

    Приготовление и стерилизация питательной среды. Для выращивания микроорганизмов в цехе чистой культуры и в цехе основной ферментации необходима стерильная питательная среда. Это делают в сырьевом или рецептурном цехе. Среду готовят по периодическому или непрерывному методу. В отдельных случаях приготовление и стерилизация среды осуществляются прямо в ферментаторе. На современных микробиологических предприятиях все чаще используют непрерывный метод приготовления среды (рис. 39). Для этого используют два резервуара в один вводят исходные вещества, а из другого жидкость идет в смеситель непрерывного действия. Из него среда при помощи насоса поА,ается в колонну стерилизации и на выдерживание, а затем — в охладитель. [c.96]

Рис. 6.3, Принципиальные схемы аппаратурного оформления реакторного узла в процессе ферментации а - проточный ферментер идеального смешения б - блок ферментеров идеального смешения периодического действия в - проточный ферментер идеального вытеснения с воздухоотделителем. Рис. 6.3, Принципиальные <a href="/info/1473564">схемы аппаратурного оформления</a> реакторного узла в <a href="/info/424012">процессе ферментации</a> а - проточный ферментер <a href="/info/27215">идеального смешения</a> б - блок ферментеров <a href="/info/1783970">идеального смешения периодического</a> действия в - проточный ферментер <a href="/info/3451">идеального вытеснения</a> с воздухоотделителем.
Таблица 16.1. Синтез рекомбинантного белка, одним из компонентов которого является пептид инсулина В, при периодической ферментации и при периодической ферментации с добавлением субстрата Таблица 16.1. Синтез <a href="/info/510018">рекомбинантного белка</a>, одним из <a href="/info/1669654">компонентов которого</a> <a href="/info/1633361">является пептид</a> инсулина В, при периодической ферментации и при периодической ферментации с добавлением субстрата
    Существуют два основных типа ферментации, периодическая ферментация (или закрытая система) и непрерывное культивирование (или открытая система). При периодической ферментации, все необходимые ингредиенты вносятся до начала процесса в ходе культивирования питательные вещества не добавляются и параметры ферментации не меняются. Именно поэтому процесс называется закрытой системой. Когда образуется достаточное количество продукта, процесс останавливают. Затем содержимое ферментера выгружают, вьщеляют продукт, выбрасывают использованные микроорганизмы, чистят ферментер и загружают его для нового культивирования. [c.66]


    Управление периодическим процессом ферментации во многом осуществляется по той же схеме, что и полупериодическим, поскольку периодический процесс является существенно нестационарным. Особенность же состоит в том, что для периодического процесса существенно уменьшается количество управляющих параметров. В самом деле, в этом случае выпадают из числа параметров управления те из них, которые относятся к потоку подаваемого субстрата, так как этого потока просто нет (кроме аэрируемого воздуха для процессов аэробной ферментации). Таким образом, к группе параметров управления можно отнести такие переменные, как температура среды (если аппарат - имеет систему обогрева или охлаждения, с помощью которой можно изменять температуру в нем), количество и температура аэрируемого воздуха, число оборотов перемешивающего устройства (если имеется возможность изменять скорость его вращения в процессе ферментации), давление в аппарате. Выбор программы для системы опти- [c.263]

    Большинство антибиотиков получают при глубинной аэробной ферментации периодического действия в асептических условиях. Период ферментации длится 7—10 суток. В последние годы внедряются полунепрерывные и непрерывные процессы ферментации. Технология завершающих стадий процесса определяется природой антибиотика, характером производства и целями дальнейшего использования антибиотиков. Для медицинских целей технология выделения и [c.68]

    Технология дрожжевой ферментации сахаров достаточно проста. Наибольшее распространение получили периодические процессы. Микробная культура и субстрат, содержащий сахара, загружаются в реактор, и процесс образования спирта продолжается от 4 до 10 сут. Содержимое реактора постоянно перемешивается механическим способом или за счет естественного барботажа выделяющегося диоксида углерода. По мере роста микробной культуры в аппарат периодически добавляют субстрат с постепенно уменьшающимися интервалами подачи. Скорость роста микроорганизмов и выход этанола зависят от температуры, которая обычно не должна превышать 30—38 " С. По мере повышения концентрации этанола оптимальная температура роста клеток микробной культуры снижается и требуется охлаждение реактора. Важным условием роста клеток является pH среды для дрожжевых культур — не более 4,5. Высокая концентрация спирта в реакторе вызывает снижение скорости роста дрожжевой культуры и ее способности превращать сахара в этанол, поэтому содержание спирта в ферментационной среде не должно превышать 11 —14% [133]. [c.123]

    Известен ряд работ, где для управления процессом ферментации используют оптимальные подпитки субстратом в ходе периодического процесса ферментации [3, 28], оптимальный температурный профиль [23, 27], изменения рОг среды в течение режима ферментации [25]. При рещении указанных задач применяют такие методы оптимизации, как принцип максимума Понтрягина, динамическое, нелинейное программирование. [c.33]

    В качестве примера рассмотрим, используя данные работы [16], задачу оптимизации периодического процесса ферментации на основе критерия эффективности Ф=Хг(0 Для математической модели общего вида [c.33]

    Рассмотрев функции и организацию работы системы на каждом уровне, перечислим комплекс задач, которые решаются при взаимодействии всех уровней иерархии. Эти задачи можно разделить на три группы статическая оптимизация для непрерывно действующих ферментационных установок и других подсистем производства, работающих в непрерывном режиме динамическая оптимизация полупериодических и периодических аппаратов и подсистем оценка параметров процессов ферментации и других подсистем для использования их в обратной связи при управлении. [c.252]

    ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПОЛУПЕРИОДИЧЕСКИМИ И ПЕРИОДИЧЕСКИМИ ПРОЦЕССАМИ ФЕРМЕНТАЦИИ [c.260]

    Глубокие волокнистые фильтры с высотой фильтрующего слоя 0,3—2,0 м применяются в системах стерилизации воздуха в производстве антибиотиков, витаминов и других продуктов, получаемых ферментацией. В этом случае их периодически стерилизуют острым паром, а затем просушивают сухим воздухом путем продувки. [c.154]

    Рассмотрим пример решения задачи адаптивного управления в следуюш,ей постановке. Требуется управлять процессом периодической ферментации с использованием в качестве управляюш их переменных расход воздуха на аэрацию н скорость вращения мешалки в аппарате с перемешиванием так, чтобы обеспечить поддержание концентрации растворенного кислорода в среде не ниже критической, при этом мощность, затрачиваемая на перемешивание, должна быть минимальной [4]. Критическая концентрация растворенного кислорода Скр соответствует такой концентрации, увеличение которой не приводит к изменению интенсивности дыхания. [c.264]


    Кузьмина Л. М., Гордеев Л. С. Разработка математической модели процесса периодической ферментации.— В кн. Современные машины и аппараты химических производств . Чимкент, 1980, т. 1, с. 65—68. [c.275]

    Чтобы предотвратить чрезмерное размножение побочной микрофлоры, особенно так называемых диких дрожжей, удельная скорость роста которых выше, чем у хлебопекарных дрожжей, процесс ферментации обычно ведут по периодической схеме в течение 10—20 ч. [c.103]

    При моделировании процесса ферментации в ферментере идеального смешения периодического действия (рис. 6.3, б) можно воспользоваться системой уравнений (6.1), так как в данной ситуации гидродинамика реактора не оказывает влияния на результаты физико-химического процесса. [c.67]

    В ходе периодической ферментации состав культуральной среды, концентрация микроорганизмов (концентрация биомассы), химический состав клеток и количество белкового продукта или метаболита зависят от фазы роста, клеточного метаболизма и наличия питательных веществ. Различают шесть основных фаз роста лаг-фазу, фазу ускорения, логарифмическую (log), или экспоненциальную фазу, фазу замедления, стационарную фазу и фазу отмирания (рис. 16.3). [c.351]

    Репутация периодической ферментации как весьма надежной системы сдерживает переход к любому другому типу ферментации, даже при том что непрерывный режим работы более эффективен. И все-таки недавно было создано сразу несколько установок, лабораторных (до 10 л) и пилотных (до 1000 л), для непрерывной и периодической ферментации с добавлением субстрата - с целью получения белков с помощью рекомбинантных микроорганизмов. Это говорит о том, что более широкое применение непрерывных ферментеров и периодических ферментеров с добавлением субстрата в промышленности -это только вопрос времени. [c.354]

    Периодическую ферментацию с добавлением субстрата можно использовать для культивирования не только микроорганизмов, но и клеток млекопитающих и насекомых. Это очень важно, поскольку 1) такие культуры все шире применяются для получения белковых продуктов, имеющих медицинское значение 2) без периодического добавления субстрата животные клетки не очень эффективно синтезируют чужеродные белки. [c.353]

    Важнейшей задачей промышленной ферментации является получение максимального количества продукта при минимуме затрат. Эту задачу можно решить, если для каждого конкретного процесса разрабатывать свою, наиболее эффективную конструкцию ферментера. Вообще говоря, непрерывная ферментация применяется в промышленных целях не так уж часто, прежде всего потому, что ученые накопили наибольший, опыт в работе с периодическими культурами. При этом стоимость получения данного количества биомассы в ферментере непрерывного действия гораздо ниже, чем в ферментере, работающем в периодическом режиме. Такое удешевление обусловливается следующими факторами. [c.353]

    Для получения данного количества продукта с помощью непрерывной ферментации нужны меньшие биореакторы, чем с помощью периодической. [c.353]

    Физиологический статус большинства клеток при непрерывной ферментации одинаков, поэтому синтез происходит более согласованно. При периодической же ферментации небольшие различия во времени сбора клеток, который проводят начиная с середины экспоненциальной фазы и заканчивая ее поздним этапом, могут приводить к значительной рассогласованности.  [c.354]

    Оригинально и увлекательно написана большая глава об особой роли углерода в химии. Традиционному изложению основ органической химии и начал биохимии предшествует рассмотрение уникальной способности углерода к образованию бесконечного множества устойчивых структур вместе с тем показано, что даже ближайшие к углероду элементы в периодической системе не обладают такими свойствами. Авторы интересно рассказывают о строенип и механизме действия ферментов. Но особенно увлекателен (хотя и не прост) материал об эволюции усвоения энергии живыми системами (от анаэробной ферментации к фотосинтезу и далее к кислородному дыханию). [c.7]

    Периодическая ферментация и периодическая ферментация с добавлением субстрата [c.363]

    Количество биомассы измеряется в граммах сухого вешества на литр культуры. Процедура Периодическая ферментация + Тф>> означает, что к культуре добавлено ОД т триптофана. При периодической ферментации с добавлением субстрата в среду добавляли 0,1 г триптофана каждые 2 ч - в общей СЛОЖНОСТИ пять раз в течение 10 ч. При добавлении большего количества триптофана не увеличивались ни биомасса, ни количество синтезированного белка. [c.363]

    Реакторы периодического действия часто используют, еслп скорость производства мала или время реакции велико. Они могут быть прпспособлены для широкого диапазона условий реакции, поэтому их используют в тех случаях, когда на одной установке производят различные химические продукты (например, в фармацевтической промышленности). Периодическое производство обладает некоторыми преимуществами по сравнению с непрерывным, если с заметной скоростью протекают побочные процессы или существует опасность загрязнения сырья (например, прп биологической ферментации). Капитальные вложения на создание периодического реактора (включая вспомогательное оборудование) обычно относительно низки. [c.72]

    Для технологий переработки примером периодических производственных процессов является ферментация (реализуемая в подавляющем большинстве случаев именно таким образом), тогда как функционирование современного паропроизводящего аппарата служит примером непрерывного процесса, при котором в аппарат равномерно поступают топливо и вода и также безостановочно производятся пар и побочные продукты. [c.24]

    Необходимо также отметпть особенность моделирования процессов в биореакторах, связанную с конструктивным разнообразием их аппаратурного оформления. Так, в гл. 4 рассмотрены основные типы биореакторов и дана их классификация, наглядно свидетельствующая о существовании нескольких десятков конструктивных схем аппаратов, различающихся по принципу ввода энергии, способу аэрации среды, методам организации движения потоков. На формирование математической модели биореактора влияют также режим работы (периодический, полупериодический, непрерывный) и масштаб аппарата. Именно при переходе от лабораторных установок к полупромышленным и промышленным в наибольшей степени проявляется влияние макрофакторов на кинетические закономерности процесса ферментации. [c.137]

    Качественно новым этапом описания процессов, протекающих в ферментационной среде бнореактора, явилось развитие представлений о существовании в аппарате отдельных зон, характеризующихся различным уровнем смешения. В основу моделирования возможных ситуаций в бпореакторе положены модели микросмещения и сегрегации. С физико-химической точки зрения ферментационная среда представляет собой многофазную систему, качественно описываемую двухуровневой иерархической схемой, где на нижнем уровне находятся отдельные составляющие среды — клетки, диспергированные капельки субстрата, а на верхнем— крупномасштабные скопления в виде клеточных агломератов, глобул из клеток, субстрата и пузырьков газа. Размер и количество этих скоплений зависит от степени турбулизацин среды. При этом ферментационную среду, соответствующую смешению уровня агрегатов, можно рассматривать как сегрегированную систему, поведение которой соответствует множеству реакторов периодического действия, в которых происходит рост и развитие микроорганизмов в течение времени ферментации. Размер клеточных агломератов и глобул зависит как от сил, сцепленных между элементами их составляющими, так и от интенсивности перемешивания в биореакторе, количественной характеристикой которой может служить величина диссипации энергии в данной области аппарата и связанная с ней величина внутреннего масштаба турбулентных пульсаций [c.147]

    Факторами, определяющими конструктивные особенности биореакторов, также являются условия стерильности или нестериль-ностп процесса ферментации непрерывный, периодический или полунепрерывный режим работы аппарата. [c.197]

    В стадии чистой культуры (ЧК) дрожжи размножаются в двух гермети (еских аппаратах на 12%-ной мелассной среде, обогащенной солодовым экстрактом и двузамещенным фосфатом аммония. Емкость первого аппарата 80—100 л, второго — 800— 820 л. Среда периодически аэрируется. Длительность ферментации 10—20 ч. Получают 2—4 кг дрожжей в пересчете на сухое вещество. [c.104]

    Представление о процессе ферментации дает следующий пример выращивания Methanomonas в ферментаторе с замкнутой системой циркуляции газовой смеси по периодической схеме культивирования. Состав газовой смеси следующий 8—11% кислорода, 10—15 /о метана, не более 5% углекислого газа, остальное— азот. Газ непрерывно пропускается через культуральную жидкость — раствор солей, в котором суспендирована культура клеток. По мере образования избыточный углекислый газ поглощается в колоннах с натронной известью. Температура культи- [c.120]

    Как видно, в проточном режиме продуктивность культуры по биомассе в 17 раз и по продукту в 6 раз превышает продуктивность периодического процесса. Во время ферментации активность глюкоамилазы увеличивается до 50—80 ед/мл. При определении глюкоамилазной активности (ГА) глюкооксидазным методом за единицу активности принимают такое количество фермента, которое вы5ывает образование 1 мг глюкозы из растворимого крахмала за 1 ч при температуре 30°С. [c.198]

    В этом случае в ферментер периодически добавляют субстрат, а конечный продукт собирают только по завершении процесса. Добавление субстрата приводит к удлинению экспоненциальной и стационарной фаз и к увеличению биомассы и количества метаболитов, синтезируемых во время стационарной фазы (например, антибиотиков). Однако в стационарной фазе микроорганизмы часто синтезируют протеолитические ферменты (протеиназы), разрушающие все производимые ими белки. Поэтому, если целью ферментации является получение бел-ковьгх продуктов, нужно остановить процесс до его перехода в эту фазу. Прямое измерение концентрации субстрата в ходе ферментации часто бывает затруднено, и чтобы определить, в какой момент нужно добавить следующую порцию субстрата, приходится использовать другие показатели, коррелирующие с его расходованием, например количество синтезированных органических кислот, значение pH или количество образовавшегося СО2. Вообще говоря, ферментеры периодического действия с добавлением субстрата требуют постоянного и более тщатель- [c.352]

    Периодическое добавление субстрата к растущей культуре рекомбинантных микроорганизмов продлевает экспоненциальную фазу и отсрочивает наступление стационарной фазы, во время которой инициируются клеточные ответы на стрессовые воздействия, происходит синтез протеиназ и другие изменения метаболизма, уменьшающие выход рекомбинантного белка. Для поддержания метаболизма клетки-хозяина количество добавляемого субстрата необходимо постоянно увеличивать. Чтобы обеспечить непрерывный синтез рекомбинантного белка и его стабильность, нужно тщательно контролировать процесс и добавлять субстрат (источник углерода и азота вместе с микроэлементами) сразу, как только в этом возникнет нсобходмость. В зависимости от генотипа микроорганизма и природы рекомбинантного белка при периодической ферментации с добавлением субстрата выход продукта может возрасти на 25-1000 % по сравнению с простой периодической ферментацией. [c.353]

    При периодической ферментации для сбора ьстеток, их разрушения и последующей очистки белкового продукта или метаболита, синтезированного микроорганизмом, необходимо крупногабаритное оборудование. В то же время в ферментере непрерывного действия синтез идет постепенно, так что и оборудование может быть не столь громоздким. [c.353]

    Высокой плотности чаше всего удается достичь при росте в периодическом режиме с добавлением субстрата. Режим подачи питательньгх веществ может быть разным непрерывным, ступенчатым или экспоненциальным. При непрерывном режиме в среду в течение всей ферментации вносят одинаковые количества питательных веществ. Однако в этих условиях удельная скорость роста непрерывно снижается. При ступенчатом режиме питательные вещества добавляют по мере увеличения концентрации клеток во все большем количестве, так что снижение удельной скорости роста в значительной мере компенсируется. При экспоненциальном режиме питательные вешества добавляют в количестве, обеспечивающем постоянную скорость роста клеток. Периодическую подачу питательньгх веществ можно автоматизи- [c.356]

    В некоторых случаях для достижения высокой плотности культуры и получения больших количеств продукта достаточно проводить ферментацию в обычном периодическом режиме. В одном из экспериментов плазмиду, несушую ген гибридного белка, одним из компонентов которого был пептид инсулина В, помешали под контроль ф-цромотора Е. соИ и вводили в trp -штамм Е. oli] трансформированные клетки [c.363]


Смотреть страницы где упоминается термин Ферментация периодическая: [c.363]    [c.369]    [c.283]    [c.124]    [c.101]    [c.121]    [c.163]    [c.166]    [c.336]    [c.350]    [c.356]   
Биология Том3 Изд3 (2004) -- [ c.66 , c.68 ]




ПОИСК







© 2024 chem21.info Реклама на сайте