Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхности излома

    Эбонит - (роговая, твердая резина) - черный тведцкй, с блестя-лей поверхностью излома материал, получаемый путем вулканизации ре- [c.66]

    Отмеченные фрактографические закономерности изломов металла характерны и для сварных соединений. Однако специфические макро- и микроструктурные особенности сварных соединений накладывают определенные отпечатки на характер их разрушения. Отличительной особенностью сварных соединений является структурная неоднородность, обусловливающая различие механических и химических свойств отдельных участков (механическая неоднородность). Кроме того, в сварных соединениях более вероятно появление дефектов (непровар, холодные и горячие трещины, поры, включения и др.) и выше уровень напряженности из-за остаточных (сварочных) напряжений. Металл шва в большинстве случаев имеет более высокие механические свойства, поэтому при отсутствии макроскопических дефектов при статическом нагружении разрывы происходят по основному металлу по механизму вязкого или хрупкого разрушения. Однако наличие дефектов и участков с различными вязкопластическими характеристиками существенно изменяет характер и местоположение разрыва (рис.2.4 2.5). Даже незначительные подрезы в швах могут перевести место разрушения с основного металла (ОМ) в область шва (Ш) или зоны термического влияния (ЗТВ). При этом плоскости разрушения располагаются вблизи линий сплавления (рис. 2.4,6), под углом 45° (рис. 2.4,в) и 90° (рис.2.4,г) к направлению действия максимальных напряжений. Прямой излом может реализоваться как при вязком, так и хрупком разрушениях, но с различными фрактографическими параметрами поверхности излома. Непровар швов способствует разрушению в результате косого среза (рис.2.4,л) или прямого излома (рис. 2.4,м). При наличии в изломе нескольких очагов разрущения поверхность излома имеет сложное очертание с различной ориентацией к направлению действия максимальных главных напряжений. Нередко в сварных соединениях имеют место так называемые мягкие и твердые прослойки (рис. 2.5). [c.68]


    Усталостное. Происходит при циклическом (повторном) нагружении в результате накопления необратимых повреждений. Излом макроскопически хрупкий, однако, у поверхности излома материал существенно наклепан. Различают усталость и малоцикловую усталость. [c.149]

    Распространение трещин или кинематика трещин . Установление законов движения конца трещины и фронта поверхности излома для определения скорости и ускорения распространяющихся трещин. [c.152]

    Геометрия трещин или статика трещин . Определение уравнений траектории криволинейных (поверхностных) трещин и поверхностей излома, образующихся в результате развития внутренних трещин. [c.152]

    В области интенсивных сдвигов происходит разрыхление, предшествующее пластическому разделению. Повышенная поврежденность в области поверхности излома показана в виде пор на рис.3.33. [c.207]

    Поверхность излома совпадает с исходной плоскостью разреза, однако, в зависимости от условий испытания и состояния материала разрушение может быть как хрупким, так и пластическим. [c.209]

    Важную информацию получают при исследовании поверхности излома цементного камня методами электронной микроскопии, особенно растровой электронной микроскопии в сочетании с рентгеновским микроанализатором. Эти методы позволяют наблюдать форму и размеры кристаллов при увеличении в 50—100 тыс. раз, характер их взаимного расположения и срастания, форму и размер пор. [c.117]

    Наличие остаточных технологических напряжений, возникающих при гибке, металлургических дефектов, а также воздействие сероводородсодержащей среды привели в условиях вибрации отвода к усталостному сероводородному растрескиванию металла (на поверхности излома обнаружены усталостные бороздки). [c.35]

    Число применяемых методов испытаний велико. К простейшим и часто применяемым методам следует отнести испытание на удар образцов с надрезом нри отрицательных температурах. Цель испытания — установить по методу последовательного приближения на ряде образцов порог хладноломкости (численное значение последнего для конструкций определенного назначения составляет 1—3 кГ м см ). При этих испытаниях часто фиксируют изменение поверхности излома образца по волокнистости в %. [c.261]

    В отличие ОТ усталостных, коррозионно-усталостные трещины обычно возникают в самом начале циклического нагружения, и мелкозернистая зона поверхности излома имеет более темную окраску и обычно покрыта продуктами коррозии. Процесс коррозионно-усталостного разрушения металла облегчается адсорбционным понижением прочности и расклинивающим эффектом поверхностно-активными компонентами внешней среды. В кислых средах поверхностно-активным веществом служит водород, который, адсорбируясь на вершине трещины, уменьшает поверхностную энергию атомов металла, находящихся под действием растягивающих сил. Наличие в электролите растворенного сероводорода [c.122]


    С выделением тепла кристаллизации связаны термические напряжения, которые возникают вследствие того, что внешние области кристалла охлаждаются быстрее внутренних, сжимаются и сдавливают последние. Эти напряжения порождают дислокации. Они являются одной из главных причин нарушения правильной периодической структуры твердого тела, появления на его поверхности изломов, впадин. Каково бы ни было [c.152]

    ИЗ исследований малоуглового рассеяния рентгеновских лучей. Разнообразие надмолекулярных структур было обнаружено и на поверхности излома полимера. Наиболее характерна для кристалли- [c.20]

    Наиболее энергетически выгодным положением, является положение так называемого повторимого хода, когда атом фиксируется в трехгранном угле, образованном ступенькой на растущей поверхности, изломом этой ступеньки и материнской гранью (число степеней свободы равно нулю). При попадании атома в двугранный угол, образованный ступенькой и материнской гранью, возможно его перемещение вдоль [c.60]

    При хрупком разрушении очаг может быть определён по характерному рисунку на поверхности излома, непоминающему "рыбий слелет" или шевроны, причём вершина шеврона указывает на очаг разрушения (рис. 1.9).  [c.28]

    Важно, что для осуществления такого процесса разрушения необходима микропластиЧеская деформация и непрерывный подвод энергии. Наличие такого процесса достаточно достоверно может быть установлено при изучении поверхности разрушения (поверхности излома). Этот вполне современный, а в действительности очень старый метод исследования качества металла называется теперь фрактографией. [c.25]

    На поверхности излома в зоне переходных температур наблюдаются четко выраженные, локализованные зоны хрупкого и вязкого разрушений (рис. 27), и, следовательно, сериальная кривая волокнистой составляющей в изломе и порога хладноломкости Г о могут быть установлены вполне надежно. Комнатная температура для ванадия любой степени чистоты соответствует области вязкого разрушения, т. е. температура начала перехода в хрупкое состояние при ударном изгибе и для ванадия с содержанием О + N. равным 5000 анм, ниже+20 С. Тем не менее уменьшение чи- [c.33]

    Структура троостита при испытаниях в воздухе обладает наибольшей сопротивляемостью развитию усталостной трещины (см. рис. 44). Однако при наводороживании трещина растет гораздо быстрее, скорость ее роста в низкоамплитудной области повышается примерно в 15 раз по сравнению с ее значением в воздухе. Поверхность разрушения образцов в воздухе в этой области имеет ячеистое строение. При наводороживании трещина распространяется по границам зерен. По мере роста А.К на поверхности излома при разрушении в воздухе появляются признаки, присущие разрушению сдвигом и сколом на некоторых участках видны зоны с неравномерно расположенными усталостными полосами. Под влиянием водорода характер межзеренного разрушения выражается более четко, чем в низкоамплитудной области. При больших значения Д/С на поверхности разрушения данной структуры в воздухе впадины становятся менее удлиненными, что свидетельствует об изменении уровня пластической деформации в вершине трещины. Водород в этой области не оказывает существенного влияния ни на скорость роста трещины, ни на процесс разрушения. [c.93]

    При испытании сплава в низкоамплитудной области в воздухе на поверхности излома видны типичные усталостные бороздки (рис. 46, а) с шагом примерно 0,3 мкм. На поверхности излома образцов, разрушенных в щелочной среде, усталостные бороздки выражены значительно меньше и декорированы интерметаллическими выделениями (рис. 46, б). При испытании в соленасыщенном растворе появляются следы межзеренного разрушения (рис. 46,в). [c.95]

    Макро- и микроскопические исследования поверхности изломов (фрактография) позволяют, с одной стороны, вскрыть механизм разрушений, с другой, - обосновывать рекомендации по их предупреждению (по выбору материалов, способов и режимов сварки, термической обработки, контролю качества). При анализе изломов сварки, термической обработки, контролю качества. При анализе изломов важно установить параметры очага разрушения (зоны инициирования разрушения), который обычно располагается в наиболее напряженных и охрупченных областях (дефекты различного происхождения, конструктивные концентраторы напряжений) основного металла (ОМ), сварного шва (Ш) и зоны термического влияния (ЗТВ). Очаги разрушения обнаруживаются в местах наибольшего раскрытия кромок в полюсе выпученного разрыва с использованием закономерностей механики разрушения. Поверхность излома имеет определенную ориентацию относительно направления силовых воздействий [c.63]

    Рассмотрим смешанное разрушение. Глубина губ среза на поверхности излома у кромки трещины может быть принята по формуле (3.38) равной Гу. Плотность энергии разрушения деформации продольного сдаига в этой зоне будет Gm . В средней части образца, занимающей область t - 2гу, плотность энергии разрушения отрыва будет Gi . Энергия продвижения трещины на еданицу длины  [c.202]

    Ряс. 4.6. Битум 4Н54 после облучения а — увеличение объема на 24% при дозе излучения 5-10в Р б —увеличение объема на 12% при дозе излучения Ы09 Р в — кавернозная структура поверхности излома облученного образца. [c.170]

    Растрескивание сварного соединения корпуса шарового клапана ЛК8/ШКМ с хвостовиком произошло по истечении года эксплуатации в условиях ОНГКМ. Корпус и хвостовик изготовлены из стали А352СгЬСС-М (% С <0,18 51 < 0,6 Мп < 1,2 Сг < 0,2 Си < 0,15 Р < 0,025 5 < 0,025 Сз < 0,38 НВ < 235). При ви.зуальном осмотре в верхней части кольцевого шва обнаружена трещина длиной 300 мм, а методами ультразвуковой дефектоскопии зафиксировано ее развитие в металле шва на расстояние 1200 мм. Характер разрушения хрупкий, поверхность излома покрыта продуктами коррозии, растрескивание начинается от непровара (рис. 13). В зоне термического влияния под корневым слоем в области очага разрушения обнаружен участок укрупненного бейнитного зерна с твердостью 266-285 НУ. В следующих далее слоях сварного соединения в зоне термического влияния наблюдается мелкозернистая нормализованная структура с твердостью 210-221 НУ. Сероводородное растрескивание сварного соединения инициировал концентратор напряжений — непровар в сочетании с бейнитной структурой металла, обладающей высокой твердостью. [c.42]


    Важнейплей особенностью кристаллических образований является их способность самоограняться. Так, при выделении кристаллического вещества из раствора или из расплавленной массы оно принимает геометрическую форму определенных кристаллов с явно выраженными плоскими гранями. При достаточно сильном ударе крупные кристаллы распадаются на ряд более мелких кристаллов, которые ограничены плоскостями, пересекающимися между собой под определенным углом. Эта способность кристаллов раскалываться на слои по определенным плоскостям носит название спайности. Как известно, у аморфных тел это свойство отсутствует — поверхность излома их бывает неровной, раковистой. [c.30]

    Действительно, надежно на поверхности хрупкого излома не обнаружено следов пластического деформирования металла в отличие от пластической деформащ1и на поверхности излома при вязком разрушении. [c.27]

    Развитие коррозии под напрйжениём в зоне очага разрушения обусловливает наличие там специфических продуктов коррозии. Так, выполненный на установке УРС-60 в излучении железного анода рентгенофазовый анализ отложений на стенках трещин разрушений в ряде случаев выявил магнетит и сульфиды железа, являющиеся результатом коррозионного взаимодействия механически активированной трубной стали 17ГС с высокосернистой арлаи-ской нефтью. Наличие магнетита указывает на образование коррозионных трещин без доступа кислорода воздуха. Сульфиды железа на поверхности излома были выявлены при воздействии концентрированного раствора азотнокислого кадмия, подкисленного соляной кислотой. О их присутствии свидетельствует желтая окраска, обусловленная наличием сульфида кадмия. [c.228]

    Большинство титановых сплавов ири КР в водных растворах разрушаются транскристаллитным сколом. Примеры таких разруше ний показаны на рис. 83, в и рис. 84 для снлавов o. (Ti—10 А1) и Р(Т1—16 Мп) соответственно. В двухфазных сплавах (а-Ьр) и (р-Ьа) морфология разрушения может видоизменяться, особенно если одна из фаз невосприимчива к КР, как это часто встречается в промышленных сплавах. Эти различия в поверхности изломов показаны на рис. 85 для сплавов Т1—6 Л1—4У и Т1—8 Мп. Фа зы, не восприимчивые к КР, обычно разрушаются вязко и, очевидно, могут служить препятствием для продвижения трещин. Как уже указывалось в предыдущем разделе, растрескивание титановых снлавов путем транскристаллитного скола происходит в определенных кристаллографических плоскостях. Данные рис. 86 [183] суммируют определения плоскости скола для а-сплавов в водных и других средах. Очевидно, что плоскость скола для фазы а находится под углом 14—16 °С по отношению к базисной плоскости, хотя имеется некоторый разброс в действительном индексе этой плоскости. Меньше данных ио определению плоскости скола для р-сплавов. В работе [92] определено, что КР сплава Т]— —13 V—ПСг—ЗА] происходит в направлении 100 . Морфология трещин в сплавах системы Т1—Мп также согласуется с этой плоскостью разрушения. Распространение трещин путем транскристал- [c.376]

    Механические свойства (табл. 85) аустенитного чугуна типа 4 пе изменились после испытаний как у поверхности, так и на глубине 760 м. Однако механические свойства аустенитного чугупа марки Д-2С заметно ухудшились. Около 80 % площади поверхности изломов образцов чугуна марки D-2 после экспозиции имело черный цвет в отличие от серых поверхностей изломов неэкспонированных образцов. Металлографические исследования полированных поперечных сечений образцов сплава Д-2С вдоль поверхностей изломов показали, что сплав подвергся избирательной меледендритной коррозии. Эта избирательная коррозия была причиной ухудшения механических свойств сплава. [c.250]

    На поверхности излома образцов, испытанных при 400°С с периодическим смачиванием водой, вообще отсутствуют усталостные бороздки. В этой зоне наблюдаются элементы квазиотрыва, характерные для большей скорости разрушения. Зона распространения трещины представляет типичный квазиотрыв с незначительными признаками пластической деформации. [c.109]


Смотреть страницы где упоминается термин Поверхности излома: [c.164]    [c.74]    [c.249]    [c.29]    [c.87]    [c.74]    [c.249]    [c.156]    [c.143]    [c.113]    [c.26]    [c.36]    [c.89]    [c.93]   
Растровая электронная микроскопия и рентгеновский микроанализ том 2 (1984) -- [ c.2 , c.42 ]




ПОИСК







© 2025 chem21.info Реклама на сайте