Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

трипсиновые панкреатические

    Итак, благодаря избирательности бифуркационных флуктуаций и их строгой согласованности структурная самоорганизация белковой молекулы приобретает детерминистические черты (случайность порождает необходимость). Из конформационно жестких и взаимодействующих с ними лабильных фрагментов возникают нуклеации, которые через ряд чисто случайных, но тем не менее неизбежных и строго последовательных событий входят в домены или в нативную трехмерную структуру белка. Весь процесс самосборки пространственной структуры не требует времени больше, чем затрачивается на рибосомный синтез белковой цепи. Уникальность бифуркаций, порядок их возникновения и устойчивый конструктивный характер обусловлены конкретной, отобранной в ходе эволюции аминокислотной последовательностью. В то же время рассматриваемая модель свертывания не исключает образование "неправильных" промежуточных состояний, содержащих структурные элементы, отсутствующие в конечной конформации. Более того, поскольку в основу модели положен беспорядочно-поисковый механизм, осуществляющий сборку белка методом "проб и ошибок", то возникновение непродуктивных состояний белковой цепи становится неизбежным. Однако они нестабильны, так как продуктивные состояния, появляющиеся в результате бифуркационных флуктуаций, всегда более предпочтительны по энергии. К обсуждению этого вопроса вернемся в главе 17 при количественном описании механизма ренатурации панкреатического трипсинового ингибитора. [c.98]


    Выявлены функции ближних, средних и дальних взаимодействий, определяющих возможность, направленность и предел самопроизвольного процесса свертывания белковой цепи в нативную конформацию. Этот вопрос рассматривается (с привлечением экспериментальных данных и неравновесной термодинамической модели) в следующей главе после анализа результатов априорного расчета пространственной структуры молекулы бычьего панкреатического трипсинового ингибитора. [c.426]

    АПРИОРНЫЙ РАСЧЕТ ТРЕХМЕРНОЙ СТРУКТУРЫ МОЛЕКУЛЫ ПАНКРЕАТИЧЕСКОГО ТРИПСИНОВОГО ИНГИБИТОРА [c.426]

    Всем отмеченным требованиям удовлетворяет белковая молекула бычьего панкреатического трипсинового ингибитора (БПТИ). Решающее значение в выборе этого белка как тест-объекта сыграло то обстоятельство, что молекула БПТИ экспериментально и теоретически изучена Почти во всех отношениях более глубоко и всесторонне, чем другие белки. [c.427]

    В предыдущих главах обсуждены результаты первых и пока единственных априорных расчетов трехмерных структур двух низкомолекулярных белков - нейротоксина II и панкреатического трипсинового ингибитора. Они демонстрируют возможность количественного подхода к описанию на атомном уровне нативной конформации и механизма структурной самоорганизации белковой молекулы, руководствуясь только знанием аминокислотной последовательности. Совпадение найденных теоретически и полученных экспериментально значений двугранных углов ф, /, (о и X с [c.482]

    Высоко оценивая значимость кристаллографических и иных опытных данных о белках, следует тем не менее иметь в виду их принципиальную недостаточность в решении ряда общих и многих конкретных вопросов структурной и структурно-функциональной организации. Поэтому теоретический конформационный анализ неизбежно должен стать неотъемлемой составной частью всех исследований морфологических и биологических свойств белковых молекул. Для этого необходимо, чтобы расчетный метод был бы менее трудоемким и более быстрым, чем изложенный в книге метод априорного расчета. Надежность существующего метода подтверждается хорошим совпадением результатов расчета с опытными данными. Точность рассчитанных априорно координат атомов нейротоксина II и панкреатического трипсинового ингибитора не уступает точности рентгеноструктурного анализа белков с разрешением -2,0 А. О его скоростных качествах можно судить по следующему примеру. Так, полный расчет трехмерной структуры белка, имеющего -100 аминокислотных остатков, проводится двумя-тремя сотрудниками, владеющими методом, с помощью двух современных персональных компьютеров за -4 месяца, [c.591]


    Панкреатический трипсиновый ингибитор [269] 1 [c.109]

    Подробный анализ небольших изменений при ассоциации трипсина и панкреатического трипсинового ингибитора быка проведен Хубером и стр. [269]. [c.126]

    Конкретные расчеты основаны на анализе атом-атомных взаимодействий, включающих невалентные, электростатические, торсионные взаимодействия и водородные связи. В качестве примера рассмотрим данные по изучению пространственного строения и конформационных возможностей фрагмента арг-1 — цис-38 молекулы бычьего панкреатического трипсинового ингибитора (БПТИ), включающей 58 остатков с известной аминокислотной последовательностью (Е. М. Попов). [c.211]

    Панкреатический трипсиновый 17,2 7,0 10,0 7,0 ингибитор [c.286]

    Обнаруженные при анализе рентгеноструктурных моделей белков факты, касающиеся распределения аминокислотных остатков в глобуле, оказались очень важными, поскольку они приближали к истинному пониманию структурной организации белковых молекул хотя бы уже тем, что давали возможность увидеть реальное положение и обнаружить несостоятельность существовавших на этот счет представлений. Общая структура свернутого белка исключительно компактна. Например, полностью вытянутая цепь панкреатического трипсинового ингибитора (58 остатков) имеет длину 211 А (-3,6 А на остаток), а максимальный габаритный размер свернутого белка равен около 29,0 А. [c.344]

Рис. III.4. Трехмерная структура пептидного остова бычьего панкреатического трипсинового ингибитора Рис. III.4. <a href="/info/99094">Трехмерная структура</a> <a href="/info/1911730">пептидного остова</a> <a href="/info/168757">бычьего панкреатического трипсинового</a> ингибитора
    Отмеченным выше требованиям удовлетворяет бычий панкреатический трипсиновый ингибитор (БПТИ). Решающее значение в выборе этого белка как тест-объекта при рассмотрении денатурации и ряда других свойств сыграло то обстоятельство, что молекула БПТИ экспериментально и теоретически изучена более глубоко и всесторонне, чем многие другие белки. Не будет большим преувеличением сказать, что уровень исследования БПТИ во многом определяют экспериментальные и теоретические возможности естествознания в изучении бел- [c.358]

    Важнейшим достижением в изучении механизмов структурной организации белков явились экспериментальные исследования Крейтона 1970-1980-х годов, особенно его работы, посвященные эмпирическому подходу к изучению промежуточных состояний обратимой денатурации цистинсо-держащих белков [29, 30]. Разработанные Крейтоном методы позволяют Идентифицировать дисульфидные связи, регулировать скорость их образования и разрушения и по последовательности возникающих промежуточных MOHO-, ди- и т.д. S-S-продуктов следить за ходом свертывания белковой цепи. Предпринятое им на этой основе исследование пути свертывания панкреатического трипсинового ингибитора [29] опережает и сейчас, по прошествии двух десятилетий, научный уровень аналогичных работ по ренатурации других белков. Подход Крейтона, однако, неприемлем для белков, лишенных S-S-мостиков. [c.86]

    Исследование процесса ренатурации барназы Ферштом и соавт. [31-33] (как и панкреатического трипсинового и ингибитора Крейтоном [29, 30]) подробно изложено во втором томе издания "Проблема белка" [2. Ч. III]. Анализ результатов привел к заключению, что первая попытка воссоздать на уровне отдельных аминокислотных остатков количественную картину всего пути свертывания белка, не содержащего дисульфидные связи, не достигла желаемой цели. Декларированный Ферштом порядок ренатурации не является неизбежным следствием объективного рассмотрения, а представляет собой один из многих правдоподобных вариантов. Принципиальное возражение заключается в несоответствии равновесной термодинамики и формальной кинетики - теоретической основы эмпирического подхода Фершта - сугубо неравновесному характеру процесса структурной самоорганизации белка. [c.88]

Рис. 11.23. Конформационная карта метиламида Ы-ацетил-1-аланина и конформационные точки аминокислотных остатков (за исключением Gly) в трехмерных структурах миоглобина (а), а-химотрипсина (6), белка хрусталика глаза (в), лизоцима (г), нейротоксина II (точки) и рубредоксина (крестики) (д), панкреатического трипсинового ингибитора (точки) и ферроцитохрома с (крестики) (е) Рис. 11.23. <a href="/info/98968">Конформационная карта</a> метиламида Ы-ацетил-1-аланина и конформационные точки аминокислотных остатков (за исключением Gly) в <a href="/info/1877232">трехмерных структурах миоглобина</a> (а), а-химотрипсина (6), белка <a href="/info/278534">хрусталика глаза</a> (в), лизоцима (г), нейротоксина II (точки) и рубредоксина (крестики) (д), <a href="/info/102113">панкреатического трипсинового ингибитора</a> (точки) и ферроцитохрома с (крестики) (е)
Рис. 11.24. Конформационная карта метиламида N-ацетилглицина (а), диметиламида N-aцeтил- -aлaнинa (б) и конформационные точки Gly и других аминокислотных остатков, предшествующих Pro в трехмерных структурах миоглобина, а-химотрип-сина, белка хрусталика глаза, лизоцима, нейротоксина II, рубредоксина, панкреатического трипсинового ингибитора и ферроцитохрома с Рис. 11.24. <a href="/info/98968">Конформационная карта</a> метиламида N-ацетилглицина (а), диметиламида N-aцeтил- -aлaнинa (б) и конформационные точки Gly и других аминокислотных остатков, предшествующих Pro в <a href="/info/1877232">трехмерных структурах миоглобина</a>, а-химотрип-сина, белка <a href="/info/278534">хрусталика глаза</a>, лизоцима, нейротоксина II, рубредоксина, <a href="/info/102113">панкреатического трипсинового ингибитора</a> и ферроцитохрома с

    Панкреатический трипсиновый 58 ингибитор БПП - брадикининпотенцирующий пептид. ОП - опиоидный пептид. [264] [c.387]

    В конце 1970-х и в 1980-е годы исследования подобного плана [40-46] не претерпели существенных изменений и не внесли новых идей в решение проблемы свертывания и структурной организации нативного белка. Для иллюстрации рассмотрим кратко результаты анализа процесса сборки белковой цепи бычьего панкреатического трштсинового ингибитора, полученные С.Миязавой и Р. Джерниганом [46]. Авторы представили белковую последовательность в виде цепочки жестких сфер, совмещенных с атомами С и СР аминокислотных остатков. Конформационными параметрами считались двугранные углы ф, у, которым разрешалось принимать дискретные значения через каждые 10°. Межостаточные взаимодействия учитывались исключительно между теми парами остатков, которые в кристаллической структуре трипсинового ингибитора образуют близкие контакты. При оценке взаимодействия между двумя остатками энергия принималась равной -2,2 ккал/моль, если расстояние между соответствующими атомами СР в нативной конформации белка находилось в интервале 2,4-6,5 А когда расстояние было < 2,4 А, энергия считалась бесконечно большой, а > 6,5 А - равной нулю. Следовательно, притяжение друг к другу могли испытывать только те остатки (жесткие сферы) атомы СР которых сближены в реальной трехмерной структуре. Для [c.488]

    Аналогичная задача, отвечающая второй стадии комбинированного Метода, решалась в работе Бэржеса и Шераги [132], которая уже рассматривалась. В ней также конформационные состояния всех остатков Панкреатического трипсинового ингибитора были отнесены не с помощью эмпирических корреляций, а на основе кристаллической структуры молекулы. Оказалось, что рассчитанная с использованием такого идеального Алгоритма предсказания, каким является эксперимент, конформация белка Даже отдаленно не напоминала его нативную структуру. Следовательно, Попытки уложить вторичные структуры в супервторичные и получить [c.509]

    Решающим доказательством справедливости предложенного подхода к решению задачи о структурной организации белка явились результаты априорного расчета трехмерной структуры бычьего панкреатического трипсинового ингибитора и количественное представление свертывания белковой цепи как самопроизвольного, быстрого и безошибочного процесса. Рассчитанная при использовании аминокислотной последовательности и стандартной валентной схемы конформация белка совпала с кристаллической структурой молекулы БПТИ. Точность расчета значений всех двугранных углов вращения ф, у, (О и %, расстояний между атомами С всех остатков и длин реализуемых водородных связей оказалась близкой точности рентгеноструктурного анализа белков высокого разрешения. На основе данных о конформационных возможностях аминокислотной последовательности БПТИ получили свое объяснение все детали ренатурации белка, механизм которой был изучен экспериментально. Тем самым, во-первых, была подтверждена неравновесная термодинамическая модель сборки белка. Во-вторых, была апробирована физическая теория структурной организации белка, вскрывающая природу бифуркационных флуктуаций и утверждающая представление о нативной конформации белковой молекулы как о глобальной по внутренней энергии структуре, плотнейшим образом упакованной и согласованной в отношении всех своих внутриостаточных и межостаточных невалентных взаимодействий. Именно гармония между ближними, средними и дальними взаимодействиями ответственна за резкую энергетическую дифференциацию и выделение из множества возможных структурных вариантов стабильной и уникальной для данной аминокислотной последовательности конформации белка. В-третьих, продемонстрированы реальность фрагментарного метода теоретического конформационного анализа пептидов и белков и удовлетворительное количественное описание с его помощью их пространственных структур применительно к условиям полярной среды. Под- [c.589]

    Ковалентные промежуточные состояния на пути свертывания бычьего панкреатического трипсинового ингибитора (BPTI) (451, 793]. Обозначения пояснены в тексте. Правильные дисульфидные связи показаны в крайней рамке справа. В промежуточиы.ч состояниях, например Ид и Ilg, правильные дисуль-фидиые связи изображены тем же шрифтом, что и в N-состояиии. Приведенный иа рисунке путь свертывания относится к быстро свертывающимся цепям, т. е. к 85% несвернутых молекул. [c.187]

    Описанный метод был апробирован Левиттом и Уоршелом для расчета пространственной структуры бычьего панкреатического трипсинового ингибитора. Белок, состоящий из 900 атомов и имеющий 319 конформационных степеней свободы (двухфанные углы вращения ф, ф, ш и х), был представлен бусиничной моделью из 110 обобщенных "атомов", обладающей 57 степенями свободы (углы а). Для минимизации энергии такой системы при вариации углов а выбраны следующие три начальных приближения полностью собранная нативная конформация белка, развернутая цепь с фиксированным С-концевым а-спиральным фрагментом (остатки 48—58) и полностью развернутая цепь. Наиболее предпочтительные оптимальные конформации каждого из трех начальных вариантов имели среднестатистические отклонения от кристаллографической структуры белка 2,5, 6,2 и 7,8 А. Минимизация энергии полностью развернутой цепи второго и третьего исходных структурных вариантов не привела к появлению каких-либо элементов белковой нативной конформации конечный результат целиком определялся начальным приближением. Выбранная модель, таким образом, не сработала. [c.288]

    Описанная схема использована Танакой и Шерагой для предсказания трехмерной структуры бычьего панкреатического трипсинового ингибитора. Первоначальная идентификация конформационного состояния каждого остатка символами h, , и с и, следовательно, определение ограниченной области возможных значений ф, ф выполнены на основе не предсказательных алгоритмов, а рентгеноструктурных данных. Конформации белка на разных стадиях процедуры Монте-Карло представлялись в виде контактных треугольников, отражающих взаимодействия между всеми парами остатков. Сопоставление контактных треугольников опытной структуры и конечной теоретической конформации молекулы трипсинового ингибитора обнаруживает существенные расхождения. В рассчитанном варианте отсутствует целый ряд контактов, присущих реальному белку, и в то же время имеется много лишних контактов. Неудовлетворительное совпадение при грубом, почти качественном способе сравнения имеет место даже в том случае, когда основная часть информации о структуре небольшого белка, а именно идентификация конформационных состояний всех остатков, была взята из эксперимента и использована в расчете на первом этапе. Помимо расчетной модели, не отражающей конформационной специфики белковой цепи, метод Танаки и Шераги ограничен также возможностями предсказательных алгоритмов. Особенно настораживает то обстоятельство, что в случае рассмотрения белка с неизвестной структурой выбранные на этапе А для остатков конформационные параметры далее не изменяются. Следовательно, допущенные при отнесении с помощью эмпирических корреляций ошибки (а они неизбежны и со-10 291 [c.291]

    В 1980-е годы исследования такого плана не претерпели существенных изменений и не внесли новых идей в решение проблемы свертывания белковой цепи. Для иллюстрации рассмотрим кратко результаты теоретического анализа процесса сборки полипептидной цепи бычьего панкреатического трипсинового ингибитора С. Миязавы и Р. Джернигана [201]. Белок изображался ими в виде цепочки жестких сфер, совмещенных с атомами и аминокислотных остатков. Конформационными параметрами считались двухгранные углы ф, ф, которым разрешалось принимать дискретные значения через каждые 10°. Межостаточные взаимодействия учитывались исключительно между теми парами остатков, которые в кристаллографической структуре бычьего панкреатического трипсинового ингибитора (БПТИ) [c.293]

    Аналогичная задача, отвечающая второй стадии комбинированного метода, решалась еще в 1975 г. А. Бэржесом и Г. Шерагой [139] на примере панкреатического трипсинового ингибитора, где также отнесения конформационных состояний остатков были сделаны не с помощью эмпирических корреляций, а на основе кристаллографической структуры молекул. Оказалось, что рассчитанная с использованием такого идеального алгоритма предсказания, каким является эксперимент, конформация белка даже отдаленно не напоминала его нативную структуру (подробнее см. раздел 8.3). [c.320]

    На основе экспериментального подхода, объединяющего отмеченные выше и некоторые другие методы, можно проводить изучение денатурации по строго логической и апробированной схеме. Она прежде всего включает получение информации о наличии дисульфидной связи в любом промежугочном продукте, что свидетельствует о сближенности соответствующих участков его полипептидной цепи. Такие данные о серии продуктов, например о моно-8-8-производных, образовавщихся на первом этапе ренатурации, создают о каждом из них специфическое стереохимическое представление. Сопоставление таких (а именно детерминированных числом и положением дисульфидных связей) представлений о всей гамме метастабильных промежуточных продуктов на пути ренатурации от флуктуирующего клубка до нативной трехмерной структуры позволяет выделить ряд связанных между собой продуктивных промежуточных состояний внутримолекулярных конвертируемых реорганизаций, ведущих этот ряд к нативной конформации. Дисульфидная связь как бы делает видимым весь процесс сборки белковой глобулы. В наиболее полной мере имеющиеся возможности реализованы пока лишь для одного белка - бычьего панкреатического трипсинового ингибитора. [c.381]

    Важнейшим достижением в познании механизма структурной самоорганизации белковых молекул, явились работы Т. Крейтона 1970— 1980-х годов, особенно посвященные экспериментальному исследованию пути свертывания панкреатического трипсинового ингибитора и созданию общего подхода к анализу процесса обратимой денатурации, цистеинсодержащих белков (гл. 12). Комплекс аналитических методов, как созданных самим Крейтоном, так и известных ранее, позволил надежно идентифицировать дисульфидные связи и управлять процессом их образования и разрушения, что сделало возможным следить за ходом свертывания белковой цепи по промежуточным S—S-продуктам. Разработанный подход, очевидно, неприемлем для белков, лишенных остатков ys или не образующих дисульфидных связей. Кроме того, он не мог быть использован и для более детального исследования самих цистеинсодержащих белков, так как позволяет судить о последовательности образуюпщхся по ходу сборки промежуточных продуктов и [c.384]


Смотреть страницы где упоминается термин трипсиновые панкреатические: [c.291]    [c.181]    [c.472]    [c.485]    [c.487]    [c.502]    [c.522]    [c.189]    [c.189]    [c.324]    [c.282]    [c.289]    [c.346]   
Химия протеолиза Изд.2 (1991) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

АПРИОРНЫЙ РАСЧЕТ ТРЕХМЕРНОЙ СТРУКТУРЫ МОЛЕКУЛЫ ПАНКРЕАТИЧЕСКОГО ТРИПСИНОВОГО ИНГИБИТОРА

Бычий панкреатический трипсиновый

Бычий панкреатический трипсиновый комплекс с трипсином

Бычий панкреатический трипсиновый моделирование свертывания

Бычий панкреатический трипсиновый путь свертывания

Кинетический путь ренатурации панкреатического трипсинового ингибитора

Панкреатический трипсиновый бычий ингибитор БПТИ

Панкреатический трипсиновый ингибитор

Панкреатический трипсиновый ингибитор структура

панкреатическая



© 2025 chem21.info Реклама на сайте