Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белка структура модели

    Антибиотики широко используют в качестве молекулярных инструментов при исследовании фундаментальных проблем биологии, таких, как расшифровка тончайших механизмов биосинтеза белка, нуклеиновых кислот и структуры клеточных стенок бактерий, создание моделей транспорта ионов через биологические мембраны и др. [c.64]


    Характерная особенность структуры мицелл — это гидрофобное ядро, образованное углеводородными цепями молекул ПАВ, окруженное гидрофильным слоем их головных групп. Этим создается некоторое подобие мицеллярной структуры со структурой глобулярных белков (см. гл. I). Однако если белковая глобула — это относительно жесткое и весьма неоднородное образование, то мицелла ПАВ, напротив, носит псевдожидкий характер [1001 и образована совершенно идентичными молекулами ПАВ. Хотя эти различия и накладывают существенные ограничения на использование мицелл как моделей ферментов [1011, с другой стороны, именно благодаря простоте в построении мицелл в мицеллярных системах наиболее четко и достоверно могут быть прослежены такие эффекты, как стабилизация переходного состояния химической реакции за счет дополнительных сорбционных взаимодействий (или же сближение реагентов при их концентрировании), далее сдвиг р/Са реагирующих групп и влияние микросреды на скорость реакции. [c.115]

    Одной из самых ранних моделей взаимодействия фермента с субстратом была модель ключа и замка , иллюстрируемая рис. 25.8. На этом рисунке показано, что форма субстрата точно соответствует определенному участку структуры белка (активному центру), специально приспособленному для взаимодействия с данным субстратом. Когда субстрат связывается с ферментом, происходит катализируемая реакция, после чего продукты реакции отделяются от фермента. Очевидно, такая модель действия фермента имеет много общего с моделями действия гетерогенных катализаторов, обсуждавшимися в разд. 13.7. Различие заключается только в том, что действие фермента более специфично. [c.453]

    Одним из наиболее интересных и обнадеживающих результатов априорного расчета двух низкомолекулярных белков явилось совпадение почти с экспериментальной точностью значений двугранных углов ф, у, и и X (или координат атомов), рассчитанных и найденных опытным путем Безусловно, это достойный и эффективный финал длительного исследования. Допуская достаточность и справедливость всех положений использованной структурной теории, применимость для белков механической модели и эффективность разработанного для пептидов расчетного метода, трудно было все-таки надеяться на количественную близость теоретических и экспериментальных данных. Предполагалось, что на окончательных результатах существенным образом скажется ряд условностей в описании невалентных взаимодействий, в учете влияния среды и, по-видимому, главное, параметризации эмпирических функций. Неизбежным, особенно вначале, представлялось быстро прогрессирующее с увеличением длины цепи накопление ошибок, которое в конечном счете должно было сделать расчет природных полипептидов (даже при правильности всех исходных теоретических посылок) малоперспективным, подобно тому, как пока еще оказывается малоэффективным синтез белков на основе методов органической химии по сравнению с биосинтезом и методами генной инженерии. Почему же этого не произошло в расчете пространственных структур двух рассмотренных белков Случайно ли получено [c.468]


    Нет ничего удивительного в том, что для описания геометрии, энергетики и прочих свойств, зависящих от взаимного ВЛИЯНИЯ атомов в молекуле, зачастую требуются различные подходы. Если спиральные конформации стереорегулярных полимеров великолепно описываются атом — атом потенциалами, то такие проблемы, как, скажем, предсказание пространственной структуры белка, структуры т-РНК и м-РНК в растворе и т. д., вообще говоря, в-ряд ли могут быть решены на уровне взаимодействий отдельных атомов. По-видимому, в последнем случае практически неизбежны более грубые модели. С другой стороны, и схема атом — атом-потенциалов может быть подвергнута критике с точки зрения квантовой механики, поскольку пока еще не найдены пути неэмпирических расчетов отдельных параметров. [c.5]

    Класс II включает молекулы определенной структуры, модели которых были определены по крайней мере опытным путем. В эту группу входят синтетические полипептиды, некоторые из фибриллярных белков, амилоза крахмала (комплекс с иодом) и дезоксирибонуклеиновая кислота. В каждом из этих случаев кристаллическая структура, по-видимому, определяется сильной тенденцией к образованию водородных связей, которые могут быть внутримолекулярными, что приводит к спиральным структурам, или межмолекулярными, что приводит к состоящим из многих тяжей спиралям или к пластинчатым структурам. [c.149]

    Эти рассуждения показывают, что статистическая механика, продуктивно используя представление о вероятности, позволяет вычислять термодинамические функции на основе простых физических моделей молекулярных систем В.месте с тем она не прибавляет к вопросу об их возможном развитии ничего сверх того, что вытекает из законов классической термодинамики. Неравновесные системы, достигая равновесного состояния, приобретают ту структуру, которая отвечает экстремуму соответствующей термодинамической функции. Однако существование различных запретов и барьеров (расчет которых не входит в задачи термодинамики) ведет к появлению метастабильных состоянии. Отдельные переходы между ними осуществляются в тех случаях, когда эти барьеры невелики при этом сохраняется основная структура молекулярной системы. Таковы, иапример, разнообразные конформационные переходы молекул гостей в клатратах и канальных соединениях или конформационные превращения белков. [c.309]

    Особенности нространственной организации нуклеиновых кислот. В отличие от белков структура ДНК более стабильна. Тепловые флуктуации не приводят к разрыву водородных связей и не меняют меж-плоскостные расстояния между основаниями. В моделях жесткость служит основным параметром. Двойная спираль ДНК обладает общей жесткостью по длине спирали и одновременно ограниченным числом вращательных степеней свободы вокруг единичных химических связей. Все конформации ДНК относятся либо кА-, либо к - формам. В случае В - форм ось спирали проходит через пары оснований вблизи их центра тяжести, а в - форме в центре остается отверстие около 4 Е, а основания оттеснены к периферии молекулы. Основная трудность полного описания энергетически разрешенных конформаций двойных спиралей состоит в чрезвычайно большом наборе всех структурных вариантов. [c.98]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]

    Разработка новых подходов и методов для анализа связи между структурой и свойствами и биологической активностью органических соединений, открывающих путь к эффективному планированию синтеза соединений с заданными характеристиками, является важной проблемой современной органической химии. В статье рассматриваются основные принципы методов предсказания физико-химических свойств и биологической активности химических соединений, а также дизайна новых соединений с заданными свойствами и биологической активностью, развиваемые нами новые подходы и их применение для решения конкретных задач. Основные направления работ связаны с построением регрессионных моделей и генерацией структур, использованием локальных молекулярных характеристик и искусственных нейронных сетей, молекулярным моделированием белков и лигандов. [c.112]


    Как видно из рис. 15.3, в структурах типа складчатого слоя водородные связи, соединяющие соседние полипептидные цепи, расположены в одном слое. На этом рисунке цепи выглядят так, как будто их можно полностью вытянуть с сохранением расположения амидных групп в плоскости слоя. Однако путем расчета и построения модели было показано, что длины связей и их углы не допускают образования таких плоских слоев. Структуры, удовлетворяющие пространственным требованиям, можно получить при изгибании цепей у а-атома углерода, как это показано на рис. 15.4 и 15.5. Структуры типа складчатого слоя обнаружены в белках шелка, растянутых волосах и в глобулярных белках. [c.431]

    В последние годы рентгеноструктурный анализ широко применяется Для определения структуры молекул белков и нуклеиновых кислот. Длины и углы связей, точно установленные для малых молекул, ис-, лользуются как стандартные значения в предположении, что они сохраняются такими же и в более сложных полимерных структурах. Одним 3 этапов определения структуры белков и нуклеиновых кислот является построение молекулярных моделей полимеров, согласующихся с рентгеновскими данными и сохраняющих стандартные значения длин связей и валентных углов (рис. 4-19, ) [71]. [c.183]

    На сегодняшний день существуют четыре основных подхода к разработке методов определения вторичной структуры (ВС) глобулярных белков по известной первичной структуре. Первый основан на поиске стереохимических закономерностей [I], второй использует физические модели формирования ВС [2.3). третий базирует- [c.112]

    Многие биологические макромолекулы типа белков или нуклеиновых кислот состоят из такого огромного количества атомов, что сборка их модели из отдельных шариков и трудоемка, и дорога. В таких случаях прибегают к макетам из картона (металла или пластмассы). Например, для изображения планарной пептидной единицы можно сделать макет (рис. П-1), исходя из размеров, приведенных на рис. 2-3 (т. 1, стр. 88). Довольно сложно рассчитать угол, под которым следует делать сгибы для воспроизведения углов Фиф (см. рис. 2-4 и табл. 2-3). (Гораздо легче решить эту задачу непосредственно путем геометрического конструирования, используя кусочки картона.) Таким способом можно создать очень красивые спиральные структуры (некоторые примеры приводит Карлсон [1]). При необходимости к а-углерод-ным атомам можно приклеить пенопластовые боковые цепи. При этом можно расположить спиральную модель на поверхности картонного цилиндра и украсить пенопластовыми боковыми цепочками. [c.376]

    В самом деле, эти работы, выявляя определенные аналогии состава и структуры глобулинов бобовых, позволяют, в частности, изучить филогению внутри этого очень крупного ботанического семейства. С другой стороны, сложность их четвертичной структуры, их способность к ассоциации и диссоциации делают интересными моделями для лучшего познания взаимосвязей между физико-химическими и функциональными свойствами белков. [c.168]

    Цветное зрение ассоциируется скорее с колбочками, чем с палочками. Как мы уже отмечали, максимум поглощения иодопсина незначительно смещен в длинноволновую область по сравнению с максимумом поглощения родопсина палочек. Чувствительность колбочек меньше, чем палочек. Спектральная чувствительность глаза, как и ожидалось, сдвигается в сторону больших длин волн при переходе от тусклого к яркому свету. Позвоночные воспринимают цвет посредством системы цветного зрения, опирающейся на три основных цвета. Должны участ-сдвать три различных пигмента колбочек, поглощающие в синей, зеленой и красной областях спектра. Хотя микроспектроскопия показывает наличие ряда пигментов, выделить их не удается. Вероятно, пигменты очень сходны с родопсином палочек. Один подход к изучению структуры белков связан с исследованием кодирующих их ДНК и определением таким способом их аминокислотных последовательностей. Заряженные аминокислоты, расположенные вблизи п-системы ретиналя, изменяют энергии основного и возбужденного электронных состояний, а установленные структуры пигментов колбочек не противоречат модели, согласно которой спектр поглощения ретиналя испытывает спектральные сдвиги при взаимодействии хромофора с соседними заряженными аминокислотами. Каждая кол- [c.240]

    Применяющиеся описания структур можно классифицировать в соответствии с их размерностью. Трехмерные модели расположения атомов и связей наиболее удобны при исследованиях взаимодействий белка с лигандами, например субстратами и кофакторами или другими молекулами. Очевидно, что, если в течение длительного времени ведется работа с определенным белком, структура которого известна, имеет смысл построить модель этого белка по координатам атомов. При предоставлении материала в печати используются двумерные изображения. С помощью некоторых двумерных изображений можно получить трехмерное представление, пользуясь, например, стереорисунками или проецируя вращающийся объект на телевизионный экран. Помимо моделей, фиксирующих положение атомов и цепей белка в пространстве, существует целый ряд представлений, большей частью двумерных или даже одномерных, с помощью которых можно описывать различные аспекты строения или функционирования белка. [c.176]

    Эти результаты согласуются со структурной моделью рибосомы, постулирующей наличие взаимодействий между рибосомными белками и РНК, зависящих от нуклеотидной последовательности (Сох, Вопапои, 1969). В соответствии с этой моделью на поверхности риоосомы экспонированными остаются лишь немногие однонитевые петли РНК. Положение этих петель определяется специфическими спирали-зованными участками в других частях РНК, а также специфическим взаимодействием с рибосомными белками. Предложенная модель приведена на рис. 8.2. Если допустить, что рибосомы одного вида обладают одинаковой структурой, то полный гидролиз доступных для действия фермента участков нуклеиновой кислоты должен привести к воспроизводимому образованию специфических фрагментов. [c.155]

    Периодичность структуры модели биомембран понятие о структурно-функциональном блоке. Периодичность модели естественным образом вытекает из приведенных в предыдущем разделе соображений. Для большей наглядности мы рассмотрим этот вопрос на примере взаимодействия двух олигомерных белков, обладающих симметрией. Примем во внимание, что многие современные мембранные белки имеют оси симметрии, перпендикулярные плоскости мембраны [38], и предположим, что димер А1А/ имеет внутренние контакты (в частном случае, входы и выходы ССИВС) к —к2 между субъединицами А1 и А/ (рис. 7). [c.151]

    Принципиальная схема модели. Структурно-функциональная асимметрия. На рис. 12 изображена схема, суммирующая отдельные этапы, обсуждавшиеся в процессе построения модели, и реализующая ее концептуальную основу. В структуре модели имеются непрерывные зоны ССИВС, изолированные от водной среды формирование центральных, энергетических зон обеспечивается вращательной симметрией молекул Ь-фосфолипи-дов, образующих бислой, а информационных зон — присоединением полярных групп белков к полярным связям жирных кислот фосфолипидов. Предполагается, что все зоны ССИВС [c.157]

    Периодическая блочная структура. Модель предпола1ает сущес1воиа 1ие в мембранах повторяющихся структурно-функциональных блоков, что вытекает из требований реализации механизмов переноса энергии в белках и учитывает симметрию олигомерных мембранных белков. Периодичность структуры биомембран подтверждается данными электронной микроскопии и РСА, причем преобладающей является периодическая структура типа гексагональной решетки, в основе которой лежат тримерные или гексамерные интегральные мембранные белки [22, 25,30, 37, 43,, 51—531. Согласно модели, она охватывает всю структуру мембраны (см. рис. 12), хотя белковый состав по обе стороны может быть различным. Не исключается также и асимметрия липидов в мембранах [34], но, учитывая возможность иной интерпретации работ [21, 55], к этим данным необходимо относиться с осторожностью. Предлагаемая зонно-блочная модель может служить, в какой-то мере, физикохимической основой представлений о функциональных блоках в биомембранах, развиваемых А. М. Уголевым [14]  [c.164]

    Значительная доля поверхностных гидрофильных атомных групп биополимеров представлена заряженными группами. Их взаимодействие с водой и ионными компонентами растворителя во многом определяет структуру и стабильность нуклеиновых кислот и белков и термодинамические свойства их растворов. Хорошими моделями заряженных атомных групп биополимеров являются одно-одно-валентные (1-1) электролиты и цвиттерио-ны аминокислот. [c.52]

    В общем случае значение а — это характеристика сорбционной способности активного центра данного фермента. Если а <С 1 (как, например, в рассмотренном катализе (3-галактозидазой), то субстратная группа К, по-видимому, либо погружаетгя (переносится из воды) в органическую среду белка не полностью, либо связывание ее требует термодинамически невыгодных затрат на конформационное изменение структуры того или другого реагента. Гидрофобное ферментсубстрат-ное взаимодействие может быть термодинамически более выгодным, чем это предполагает простая экстракционная модель (где а= 1). В этом случае активный центр должен содержать локальный участок с относительно невыгодной поверхностной энергией пограничного слоя белок — растворитель например, с гидрофобными боковыми группами [c.44]

    Наиболее важная информация о строении молекулы химотрипсина (молекулярная масса 25 ООО) была получена с помощью рентгеност-зуктурных исследований последних лет, проведенных Блоу с сотр. 14, 17—19]. Как итог своих исследований авторы представили трехмерную модель молекулы химотрипсина (см. рис. 3). В согласии с ранними общими представлениями о строении белков было найдено, что все заряженные группы в молекуле этого фермента направлены в сторону водного растворителя (за исключением трех, которые выполняют специфические функции либо в механизме активации зимогена, либо в механизме действия активного центра). Особенности расположения аминокислотных остатков с гидрофобными боковыми цепями внутри белковой глобулы также согласуются с ранними представлениями о важной роли гидрофобных взаимодействий в стабилизации третичной структуры белков (см. гл. I). [c.127]

    Порядок химической связи аминокислот друг с другом создает первичную структуру макромолекулы белка. Однако его свойства зависят также и от конформации полипептидной цепи (вторичной структур ы). Одной из моделей вторичной структуры белка является так называемая а-спираль, в которой полипептидную цепь надо представлять себе в виде нити, обвивающей поверхность 1илиндра. Устойчивость а-спирали обеспечивается водородными связями между группами NH и С=0 (рис. 11.1). [c.334]

    Наиболее простой моделью является та, в которой конденсат трактуется как сплошная среда, т. е. рассматривается макроскопически, без углубления в детали его внутренней структуры и структуры поверхности, ограничивающей тело. Такой подход, свойственный классической физике, при обобщении опытных данных дает возможность сформулировать наиболее общие, сравнительно простые законы, но не обладает достаточной предсказую-щей силой и глубиной. Наиболее действенным является микроскопический подход он особенно эффективен при интерпретации наблюдаемых свойств и явлений в чистых кристаллических твердых телах. Хуже обстоит дело с микроскопией свойств некристаллических твердых тел [3], особенно белковых. Белковые вещества — крайне индивидуализированные системы с очень сложным и высоким порядком, но не с таким примитивным порядком, ка- -кой существует в чистых кристаллах. Белки — основа живого. Глубокое изучение биологических конструкций только начинается. Не лучше обстоит дело и с микроскопией жидких кристаллов [4 ]. [c.12]

    Модели вторичных структур транспортных и рнвосо.мных РНК подробно рассмотрены во втором томе этого учебника (Спирин А. С. Молекулярная биология Структура рибосом и биосинтез белка.— М. Высшая школа, 1986), [c.38]

    Белок TF 1П А был первым эукариотическим регуляторным полипептидом транскрипции с известной аминокислотной последовательностью, для которого удалось построит доменную структурную модель. В этом белке выявлены 9 повторяющихся, но отличающихся друг от друга доменов — пальцев , каждый из которых включает около 30 аминокислот. Домены содержат инвариантные-участки, включающие два цистеиновых и два гистидиновых остатка, связанных с ионом цинка (рис. 115). Концы разных пальцев (петли) несут варьирующие аминокислотные остатки, среди которых встречаются положительно заряженные, которые, по-видимому, способны легко взаимодействовать с ДНК. Как оказалось, подобная структура регуляторного белка закодирована в ряде других генов, кодирующих регуляторные белки эукариот. Так, ген Kruppel (калека), контролирующий развитие дрозофилы, кодирует белок, содержащий четыре подобных домена. Такие домены обнаружены и в белках — рецепторах гормонов. Предполагается, что выступающие связывающиеся с ДНК разные пальцы, соединенные друг с другом гибкими мостиками, осуществляют сразу несколько контактов с ДНК. Такая модель строения TF П1 А позволяет предполо- [c.211]

    Рассмотрим пример использования модели для оценки константы плавления вторичной структуры мРИК рибосомой. Метод оценки этой константы заключается в следующем. Многие прокариотические гены имеют преимущественно полицистронную природу /т.е. на них синтезируются непрерывные молекулы мРНК, кодирупцие два или более белка . Следуя гипотезе о влиянии вторичной структуры на трансляцию, естественно предположить, что цистроны с различной вторичной структурой будут транслироваться с разной эффективностью. [c.163]

    Принимая во внимание плоское строение пептидной связи, возможность свободного вращения связей у а-углеродного атома и постоянство углов и межатомных связей, можно прийти к двум возможньш основным моделям вторичной упорядоченной структуры белков. [c.271]


Смотреть страницы где упоминается термин Белка структура модели: [c.724]    [c.468]    [c.157]    [c.185]    [c.378]    [c.378]    [c.269]    [c.387]    [c.374]    [c.419]    [c.143]    [c.430]    [c.151]    [c.1152]   
Принципы структурной организации белков (1982) -- [ c.157 ]

Принципы структурной организации белков (1982) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Белок белки структура

Структура белка



© 2024 chem21.info Реклама на сайте